SEMI-T-ABSO FUZZY SUBMODULES AND SEMI-T-ABSO FUZZY MODULES

HATAM Y. KHALAF¹ AND WAFAA H. HANOON²

¹Dept. Of Math./College of Edu. for Pure Sci. (Ibn-Alhythaim)/ Univ. of Baghdad/ Iq and ²Dept. of Computer Sci./ College of Edu. for Girls/ Univ. of Kufa /Iq. <u>¹dr.hatamyahya@yahoo.com</u> ²wafaah.hannon@uokufa.edu.iq

Abstract. Let M be a unitary R-module and R be a commutative ring with identity and let X be a fuzzy module of an R-module M. Our aim in this paper to study the concepts semi T-ABSO fuzzy submodules and semi T-ABSO fuzzy modulesas generalizations of T-ABSO fuzzy submodules and T-ABSO fuzzy modules. Many new basic properties, characterizations and relationships between semi T-ABSO fuzzy submodules(modules) and other concepts are given.

Keywords. T-ABSO fuzzy submodule, T-ABSO fuzzy module, semi T-ABSO fuzzy ideal, semi T-ABSO fuzzy submodule, semi T-ABSO fuzzy module, quasi-prime fuzzy submodule, semiprime fuzzy submodule.

1. Introduction

Zahedi [17], in1992 presented the concept of a fuzzy ideal A fuzzy subset K of a ring R is called a fuzzy ideal of R, if $\forall x, y \in$ R: $K(x-y) \ge \min\{K(x), K(y)\}$ and $K(xy) \ge \max\{K(x), K(y)\}''$. Mukhrjee [13], in 1989 intoduced the concept of prime fuzzy ideal " A fuzzy ideal Ĥ of a ring R is called a prime fuzzy ideal if Ĥ is a non-empty and for all a_s, b_l fuzzy singletons of R such that $a_s b_l \subseteq \hat{H}$ implies that either $a_s \subseteq \hat{H}$ or $b_l \subseteq \hat{H}, \forall s, l \in [0,1]^{"}$. Deniz et al [3], in 2017 presented the concept of 2-absorbing fuzzy ideal which is a generalization of prime fuzzy ideal. Darani and Soheilnia [2], in 2011 introduced the concept of 2-absorbing submodule "a proper submodule N of M is called 2-absorbing submodule of M if whenever a , $b \in R$, $m \in M$ and $abm \in N$, then am \in N or bm \in N or ab $\in (N:_R M)$ ". Hatam and wafaa [7], in 2018 expanded this concept "Let X be fuzzy module of an R-module \dot{M} . A proper fuzzy submodule A of X is called T-ABSO fuzzy submodule if whenever a_s , b_l be fuzzy singletons of R, and $x_v \subseteq X$, $\forall s, l, v \in [0,1]$ such that $a_s b_l x_v \subseteq A$ then either $a_s b_l \subseteq$ $(A_{R}X)$ or $a_{s}x_{v} \subseteq A$ or $b_{l}x_{v} \subseteq A$ " Abdulrahman [1], in 2015 presented the definition of 2-absorbing module" An R-module M is called a 2-absorbing module if zero (0) submodule of M is 2absorbing submodule "equivalently " if whenever a, $b \in R$, $m \in M$ and abm = 0, then am = 0 or bm = 0 or $ab \in annM''$. Hadi [4], in 2004 presented the concept of semiprime fuzzy submodules "Let A be a fuzzy submodule of a fuzzy module X of an R-module M such that $A \neq X$, A is called semiprime fuzzy submodule if for each fuzzy singletone r_k of R, $x_v \subseteq X$, $r_k^2 x_v \subseteq A$ implies $r_k x_v \subseteq A$ Maysoun [11], in 2012 introduced the concept of semiprime fuzzy

module "Let X be a fuzzy module of an R-module M, X is called semiprime fuzzy module if for each non-empty fuzzy submodule A of X, F-annA is a semiprime fuzzy ideal of R".Hatam [6], in 2001 introduced the concept of quasi-prime fuzzy submodule" A fuzzy submodule A of a fuzzy module X of an R-module M is called a quasi-prime fuzzy submodule of X if whenever $a_s b_l x_v \subseteq A$ for fuzzy singletons a_s, b_l of R and $x_v \subseteq X, \forall s, l, v \in L$, implies that $a_s x_v \subseteq A$ or $b_l x_v \subseteq A$ ".Also Abdulrahman [1], in 2015 is circulated the concepts of 2-absorbing submodules and 2-absorbing modules to semi-2-absorbing submodules and semi-2-absorbing modules.

This paper be composed of two sections

In section (1) we present and study the concept of semi T-ABSO fuzzy submodule as a generalization of T-ABSO fuzzy submodule and we give many properties, characterizations and relationships between semi T-ABSO fuzzy and other concepts.

Futhermore we debate the direct sum of semi T-ABSO fuzzy submodules. In section(2) we present the concept of semi T-ABSO fuzzy modules , so many properties and characterizations are given . Also we debate the direct sum of semi T-ABSO fuzzy modules.

Note that we denote to fuzzy: F., module: M., submodule: subm. , [0,1]: L , otheroiwse: o.w.

2. Semi T-ABSO F. Subm.

In this section we present the concepts of semi-T-ABSO F. ideal and semi T-ABSO F. subm. Also introduced and study some properties and relations of semi-T F. subm. with other concepts of F. subm.

Frist we give the proposition specificates of T-ABSO F. subm. in terms of its level subm. is given:

"Proposition 2.1. Let A be T-ABSO F. subm. of F. M. X of an R- M. M iff the level subm. A_v is T-ABSO subm. of X_v , for all $v \in L$, [7]".

Now, we present the concepts of a semi T-ABSO F. ideal.and semi T-ABSO F. subm. as follows:

Definition 2.2. A proper F. ideal \hat{H} of a ring R is called a semi T-ABSO F. ideal if for F. singletons a_s , b_l of R such that $a_s^2 b_l \subseteq \hat{H}$,

 $\forall s, l \in L$, implies either $a_s b_l \subseteq \hat{H}$ or $a_s^2 \subseteq \hat{H}$; that is \hat{H} a semi T-ABSO F. subm. of X of an R- M. R.

Definition 2.3. A proper F. subm. A of F. M. X of an R- M. M is called a semi T-ABSO F. subm. of X if for F. singletons a_s of R and $x_v \subseteq X$ such that $a_s^2 x_v \subseteq A$, $\forall s, v \in L$, implies either $a_s x_v \subseteq A$ or $a_s^2 \subseteq (A:_R X)$.

The proposition specificates a semi T-ABSO F. subm. in terms of its level subm is given:

Proposition 2.4. Let A be F. subm. of F. M. X of an R- M. M. Then A is a semi T-ABSO F. subm. of X iff the level A_v is a semi T-ABSO subm. of X_v , $\forall v \in L$.

Proof. (\Rightarrow) Let $a^2x \in A_v$ for each $a \in \mathbb{R}$, $x \in X_v$, $\forall v \in \mathbb{L}$, then $A(a^2x) \ge v$, hence $(a^2x)_v \subseteq A$ so that $a_s^2x_k \subseteq A$ where $v = \min\{s, k\}$ and $(a^2)_s = a_s^2$. But A is a semi-T-ABSO F. subm., then either $a_sx_k \subseteq A$ or $a_s^2 \subseteq (A:_R X)$, hence $(ax)_v \subseteq A$ or $(a^2)_v \subseteq (A:_R X)$, implies $ax \in A_v$ or $a^2 \in (A_v:_R X_v)$. Thus A_v is a semi-T-ABSO of X_v .

(⇐) Let $a_s^2 x_k \subseteq A$ for F. singleton a_s of R and $x_v \subseteq X$, $\forall s, k \in L$, then $(a^2 x)_v \subseteq A$ where $v=\min\{s, k\}$, hence $A(a^2 x) \ge v$ so that $a^2 x \in A_v$. But A_v is a semi T-ABSO subm. of X_v , then either $ax \in A_v$ or $a^2 \in (A_v;_R X_v)$, hence $(ax)_v \subseteq A$ or $(a^2)_v \subseteq (A;_R X)$, so that $a_s x_k \subseteq A$ or $a_s^2 \subseteq (A;_R X)$. Thus A is a semi T-ABSO F. subm. of X.

Remarks and Examples 2.5

(1) Every semiprime F. subm. is a semi T-ABSO F. subm. **Proof:**

Let $a_s^2 x_v \subseteq A$ for F. singleton a_s of R and $x_v \subseteq X$. Since semiprime F. subm., then that $a_s x_v \subseteq A$. So that A is a semi T-ABSO F. subm.

However the converse incorrect, for example:

Let X:Z \rightarrow L such that X(y)= $\begin{cases} 1 & \text{if } y \in Z \\ 0 & o.w. \end{cases}$ It is obvious that X is F. M. of Z- M. Z. Let A: Z \rightarrow L such that $A(y) = \begin{cases} \frac{1}{2} & \text{if } y \in 4Z \\ 0 & o.w. \end{cases}$ It is obvious that A is a fuzzy submodule of X. Now, A is a semi T-ABSO fuzzy submodule of X since

 $2\frac{2}{\frac{1}{3}} \cdot 1\frac{1}{3} = 4\frac{1}{3} \subseteq A$, $2\frac{2}{\frac{1}{3}} = 4\frac{1}{3} \subseteq A$ where $A(4) = \frac{1}{2} > \frac{1}{3}$, but A is not semiprime fuzzy submodule since $2\frac{1}{3} \cdot 1\frac{1}{3} = 2\frac{1}{3} \not\subseteq A$ because

 $A(2)=0 \ge \frac{1}{3}$.

(2) It obvious that every T-ABSO F. subm. is semi T-ABSO F. subm. However the convrse incorrect for example: Let X:Z \oplus Z \rightarrow L such that X(x,y)= $\begin{cases} 1 & if (x, y) \in Z \oplus Z \\ 0 & o.w. \end{cases}$ It is obvious that X is F. M. of Z-M. Z \oplus Z.

It is obvious that X is F. M. of Z- M. $Z \oplus Z$. Let $A: Z \oplus Z \to L$ such that $A(x,y) = \begin{cases} v & if (x,y) \in 10Z \oplus (0) \\ 0 & o.w. \end{cases}$ It is obvious that A is F. subm. of X. Now, $A_v = 10Z \oplus (0)$ is not T-ABSO subm. in $X_v = Z \oplus Z$ as Z-

Mow, $A_v = 102 \oplus (0)$ is not 1-ABSO subil. If $A_v = 2 \oplus 2$ as 2-M. since $2.5(1,0) = (10,0) \in 10Z \oplus (0)$, but $2(1,0) \notin 10Z \oplus (0)$, $5(1,0) \notin 10Z \oplus (0)$ and $2.5 \notin (10Z \oplus (0):_Z Z \oplus Z) = (0)$. But A_v is a semi T-ABSO subm. since if $r^2(x,0) \in A_v$ then $r^2x \in 10Z$, hence it obvious that 10Z is semiprime, that is r x $\in 10Z$, Thus r(x,0)∈10Z⊕(0)= A_v . Then A_v is a semi T-ABSO subm. Thus A is a semi T-ABSO F. subm.

- (3) Every a quasi-prime F. subm. is a semi T-ABSO F. subm. However the converse incorrect. Consider the example in part(1) where A is semi T-ABSO F. subm., but A is not quasi-prime F. since 2¹/₃. 2¹/₃. 1¹/₃=4¹/₃ ⊆ A, but 2¹/₃. 1¹/₃=2¹/₃ ∉ A.
- (4) Let A, B be F. subm. of F. M. X of an R- M. M and $A \subseteq B$. If A is a semi T-ABSO F. subm. of X then A is a semi T-ABSO F. subm. of B. **Proof.** Let be F. singleton r_k of R and $x_v \subseteq B$ such that $r_k^2 x_v \subseteq A$, $\forall k, v \in L$. Since B is F. subm. of X then $x_v \subseteq X$ and $r_k^2 x_v \subseteq A$, then either $r_k x_v \subseteq A$ or $r_k^2 \subseteq (A_{:R}X)$. If $r_k^2 \subseteq (A_{:R}X)$ then $r_k^2 X \subseteq A$ and since B is F. subm. of X, hence $r_k^2 B \subseteq r_k^2 X$, so that $r_k^2 B \subseteq A$ implies $r_k^2 \subseteq (A_{:R}B)$. Thus A is a
- semi T-ABSO F. subm of B. (5) The intersection of two semi T-ABSO F. subms is not necessary that a semi T- ABSO F. subm., for example: Let X: $Z_{12} \rightarrow L$ such that $X(y) = \begin{cases} 1 & if \ y \in Z_{12} \\ 0 & o.\ w. \end{cases}$ It is clear that X is F. M. of Z- M. Z. Let A: $Z_{12} \rightarrow L$ such that $A(y) = \begin{cases} v & if \ y \in \overline{(4)} \\ 0 & o.\ w. \end{cases}$ Let B: $Z_{12} \rightarrow L$ such that $B(y) = \begin{cases} v & if \ y \in \overline{(6)} \\ 0 & o.\ w. \end{cases}$ It is obvious that A and B are F. subms of X. Now, $A_v = \overline{(4)}$, $B_v = \overline{(6)}$ and $X_v = Z_{12}$ as Z- M. It is obvious that A_v and B_v are semi T-ABSO subms, but $A_v \cap B_v = \overline{(4)} \cap \overline{(6)}$ $= \overline{(0)}$ is not semi T-ABSO subm. since 2^2 . $\overline{(3)} = \overline{(0)}$, but 2. $\overline{(3)} \neq \overline{(0)}$ and $2^2 \notin annZ_{12} = 12Z$. So that A and B are semi T-ABSO F. subms, but $A \cap B$ is not a semi T-ABSO F. subm. of X.
- (6) Let X:Z \to L such that $X(y) = \begin{cases} 1 & \text{if } y \in Z \\ 0 & o.w. \end{cases}$ It is obvious that X be F. M. of Z- M. Z. Let A: Z \to L such that $A(y) = \begin{cases} v & \text{if } y \in p^2 Z \\ 0 & o.w. \end{cases} \forall v \in L$ Where p is a prime number. It is obvious that A is F. subm. of X. Now, $A_v = p^2 Z$ and $X_v = Z$ as Z- M It is obvious that A_v , p is prime number is a semi T-ABSO subm. Thus A is a semi T-ABSO F. subm. of X.
- (7) Let *A*, *B* be two F. subm. of F. M. *X* of an R- M. \dot{M} suth that $A \cong B$. If *A* is a semi T-ABSO F. subm. then it is not necessary that B is a semi T-ABSO F. subm.for example Let X:Z→L such that $X(y) = \begin{cases} 1 & if \ y \in Z \\ 0 & o.w. \end{cases}$ It is obvious that *X* is F. M. of *Z*- M. Z. Let *A*: Z→L such that $A(y) = \begin{cases} v & if \ y \in 4Z \\ 0 & o.w. \end{cases}$ V $v \in L$ Let *B*: Z→L such that $B(y) = \begin{cases} v & if \ y \in 60Z \\ 0 & o.w. \end{cases}$ It is obvious that A and B are F. subm. of X. Now, $A_v = 4Z$, $B_v = 60Z$ are subm.of $X_v = Z$ as Z- M. and $4Z \cong 60Z$, but $A_v = 4Z$ is semi T-ABSO while $B_v = 60Z$ is not semi T-ABSO F. subm., but *B* is not semi T-ABSO F. subm. of *X*.

(8) If A is semi T-ABSO F. subm. of F. M. X of an R- M. M and B⊆A, it may be that B is not semi T-ABSO F. subm. for example:
Consider the example in part(7), where A is a semi T-ABSO

F. subm., $B \subset A$ since $B_v = 60Z \subset A_v = 4Z$, but B is not semi T-ABSO F. subm. of X.

Recall that "Let A be a F. subm. of F. M. X of an R-module \dot{M} , then A is called an irreducible F. subm. if for all two F. subms B and K such that $B \cap K=A$ then B=A or K=A otherwise A is called reducible, [12]".

Proposition 2.6. Let X be F. M. of an R- M. M and A is irreducible F. subm. of X. Then the following expressions are equivalent:

1-A is T-ABSO F. subm. and $(A_{R}X)$ is semi-prime F. ideal.

2- *A* is a prime F. subm.

3-A is a semi prime F. subm.

4- *A* is a quasi prime F. subm.

5- A is T-ABSO F. subm. and $(A:_R X)$ is a prime F. ideal.

Proof. (1) \Rightarrow (2) Let $r_k(r_k x_v) \subseteq A$ for F. singleton r_k of R and $x_v \subseteq X$. Since A is T-ABSO F. subm., then $r_k x_v \subseteq A$ or $r_k^2 \subseteq (A_{:R}X)$. If $r_k x_v \subseteq A$ then we are done. If $r_k^2 \subseteq (A_{:R}X)$, then $r_k \subseteq (A_{:R}X)$ since $(A_{:R}X)$ is a semiprime F. ideal. so that A is a prime F. subm.

(1) \Rightarrow (3) Let $r_k^2 x_v \subseteq A$ for F. singletons r_k of R and $x_v \subseteq X$. Since A is T-ABSO F. subm., then $r_k x_v \subseteq A$ or $r_k^2 \subseteq (A_{:R}X)$. If $r_k x_v \subseteq A$ the proof is complete.

If $r_k^2 \subseteq (A_R^2 X)$, then $r_k \subseteq (A_R^2 X)$ since $(A_R^2 X)$ is a semi prime F. ideal. Hence $r_k x_v \subseteq A$. Thus A is a semi prime F. subm.

 $(2) \Longrightarrow (3) By [12].$

 $(3) \Longrightarrow (4) \text{ By } [6].$

(4) \Rightarrow (5) Since *A* is a quasi prime F. subm., then *A* is T-ABSO F. subm. and (*A*:_{*R*} *X*) is a prime F. ideal by [6].

 $(5) \Rightarrow (1)$ It is clear.

Proposition 2.7. Let X be F. M. of an R- M. M and A and B be F. subm. of X. Then A is a semi T-ABSO F. subm. iff $r_k^2 B \subseteq A$ for F. singleton r_k of R, $\forall k \in L$, implies $r_k B \subseteq A$ or $r_k^2 \subseteq (A:_R X)$.

Proof. (\Rightarrow) Let $r_k^2 B \subseteq A$ for F. singleton r_k of R. Assume there exists $x_v \subseteq B$ such that $r_k x_v \not\subseteq A$, since $r_k^2 B \subseteq A$, hence $r_k^2 x_v \subseteq A$, but A is a semi T-ABSO F. subm. and $r_k x_v \not\subseteq A$. Then $r_k^2 \subseteq (A_{:R} X)$.

 (\Leftarrow) It is obvious.

Proposition 2.8. Let A be a proper F. subm. of F. M. of an R- M. M. If A is a semi T-ABSO F. subm. of X, then $(A_{R}X)$ is a semi T-ABSO F. ideal.

Proof. Let a_s, b_l be F. singletons of R, such that $a_s^2 b_l \subseteq (A_{R}X)$, hence $a_s^2 b_l X \subseteq A$, then $a_s^2 b_l x_v \subseteq A$ for each F. singleton $x_v \subseteq X$ and suppose that $a_s^2 \not\subseteq (A_{R}X)$. Since A is a semi T-ABSO F. subm., hence $a_s b_l x_v \subseteq A$. So that $a_s b_l \subseteq (A_{R}X)$. Then $(A_{R}X)$ is semi T-ABSO F. ideal.

Recall that "A fuzzy module X of an R-module M is called a multiplication fuzzy module if for each non-empty fuzzy submodule A of X there exists a fuzzy ideal \hat{H} of R such that $A=\hat{H}X$,[6]".

The converse of Proposition (2.8) hold under the class of multiplication F. M. as follows:

Proposition 2.9. Let A be a proper F. subm. of a multiplication F. M. X of an R- M. M. If $(A_{R}X)$ is a semi T-ABSO F. ideal, then A is a semi T-ABSO F. subm.

Proof. Let $a_s^2 x_v \subseteq A$ for F. singletons a_s of R and $x_v \subseteq X$.

Then $a_s^2 < x_v \ge A$. But $< x_v \ge \hat{H}X$ for some F. ideal \hat{H} of R. Since X is a multiplication F. M., then $a_s^2 \hat{H} \subseteq (A_{:R}X)$. But $(A_{:R}X)$ is a semi T-ABSO F. ideal, then either $a_s \hat{H} \subseteq (A_{:R}X)$ or $a_s^2 \subseteq (A_{:R}X)$ by Proposition (2.7). Then $a_s \hat{H}X \subseteq A$ or $a_s^2 \subseteq (A_{:R}X)$. Thus $a_s < x_v \ge A$ or $a_s^2 \subseteq (A_{:R}X)$. Then A is a semi T-ABSO F. subm.

Recall that "A F. M. X of an R-M \dot{M} is called a cyclic F. M. if there exists $x_v \subseteq X$ such that $y_k \subseteq X$ written as $y_k = r_l x_v$ for some F. singleton r_l of R, where $k, l, v \in L$ in this case, write $X = \langle x_v \rangle$ to denote the cyclic F. M. generated by x_v , [6]".

Corollary 2.10. Let A be F. subm. of cyclic F. M. X of an R-M. M. Then A is a semi T-ABSO F. subm. iff $(A:_R X)$ is a semi T-ABSO ideal.

Proof. Since every cyclic F. M. is a multiplication F. M. by[6]. By Proposition (2.8) and Proposition (2.9), then the outcome is obtained.

Recall that "If X is F. M. of an R-M. \dot{M} , then X is called a finitely generated F. M. if there exists $x_1, x_2, x_3, ... \subseteq X$ such that $X=\{a_1(x_1)_{v_1} + a_2(x_2)_{v_2} + \cdots + a_n(x_n)_{v_n}\}$, where $a_i \in R$ and $a(x)_v = (ax)_v, \forall v \in L$. Where $(ax)_v(y) = \begin{cases} v & \text{if } y = ax \\ 0 & o.w. \end{cases}$, [8]".

Recall that "If X is F. M. of an R-M. \dot{M} , then X is said to be a faithful F. M. if F-ann $X \subseteq 0_1$ where F-ann $X = \{x_v: r_k x_v = 0_1 \forall x_v \subseteq X \text{ and } r_k \text{ is F. singleton of R}, \forall v, k \in L\}$, [15]".

Corollary 2.11. Let X be a faithful finitely generated multiplication F. M. of an R- M. M and A is a proper subm. of X. Then the following expressions are equivalent:

1- A is a semi T-ABSO F. subm. of X;

2- $(A:_R X)$ is a semi T-ABSO F. ideal;

3- A=ĤX for some semi T-ABSO F. ideal Ĥ of R.

Proof. (1) \Rightarrow (2) By Proposition (2.8).

 $(2) \Rightarrow (3)$ By [6, Proposition (2.2.2)], we get the result.

 $\begin{array}{l} (3) \Longrightarrow (1) \ \text{Let} \ r_h^2 x_v \subseteq A \ \text{for } F. \ \text{singleton} \ r_h \ \text{of } R \ \text{and} \ x_v \subseteq X, \ \text{then} \\ r_h^2 < x_v > \subseteq A. \ \text{Since } X \ \text{is a multiplication} \ F. \ \text{M., so that} \ < x_v > \\ = KX \ \text{for some} \ F. \ \text{ideal } K \ \text{of } R, \ \text{then} \ r_h^2 KX \subseteq \hat{H}X. \ \text{Since } X \ \text{is a} \\ \text{faithful finitely generated multiplication} \ F. \ \text{M., hence} \ r_h^2 K \subseteq \hat{H}. \\ \text{But } \hat{H} \ \text{is a semi } T\text{-}ABSO \ F. \ \text{ideal, so that either} \ r_h K \subseteq \hat{H} \ \text{or} \\ r_h^2 \subseteq (\hat{H}_{:R} \lambda_R) \ \text{by Proposition} \ (2.7). \ \text{Hence} \ r_h KX \subseteq \hat{H}X = A \ \text{or} \\ r_h^2 \subseteq \hat{H} = (\hat{H}X_{:R}X) = (A_{:R}X). \ \text{Then} \ r_h x_v \subseteq A \ \text{or} \ r_h^2 \subseteq (A_{:R}X). \end{array}$

Proposition 2.12. Let *A* be a proper F. subm. of F. M. *X* of an R-M. \dot{M} . Then the following expressions are equivalent:

1- A is a semi T-ABSO F. subm. of X;

2- $(A_{X} \hat{H})$ is a semi T-ABSO F. subm. for each F. ideal \hat{H} of R such that $\hat{H}X \not\subseteq A$;

3- $(A:_X < a_s >)$ is a semi T-ABSO F. subm. for each F. singleton a_s of R, $a_s X \not\subseteq A$.

Proof. (1) \Rightarrow (2) Since $\hat{H}X \not\subseteq A$, hence $(A_{:_X} \hat{H}) \neq X$. Let $r_k^2 x_v \subseteq (A_{:_X} \hat{H})$ for F. singletons r_k of R, $x_v \subseteq X$. Thus $r_k^2 \hat{H} x_v \subseteq A$. By

Proposition (2.7), either $r_k I x_v \subseteq A$ or $r_k^2 \subseteq (A_{:R} X)$, hence $r_k x_v \subseteq (A_{:X} \hat{H})$ or $r_k^2 \subseteq ((A_{:X} \hat{H})_{:R} X)$. (2) \Rightarrow (3) It is obvious.

(3)⇒(1) Since $1_{\nu}X \not\subseteq A$, hence $(A_{R} < 1_{\nu} >)$ is a semi T-ABSO F. subm., then A is a semi T-ABSO F. subm. since $(A_{R} < 1_{\nu} >) = A$.

Proposition 2.13. Let A be a semi T-ABSO F. subm. of F. M. X of an R- M. M. Then $(A_{R} x_{v})$ is a semi T-ABSO F. ideal of R, for each $x_{v} \subseteq X - A$.

Proof. Let $r_k^2 b_l \subseteq (A_{\mathbb{R}} x_v)$ for some F. singletons r_k , b_l of R. Hence $(r_k^2 b_l) x_v \subseteq A$, So that $r_k^2 (b_l x_v) \subseteq A$. Since A is a semi T-ABSO F. subm., then either $r_k b_l x_v \subseteq A$ or $r_k^2 \subseteq (A_{\mathbb{R}} X)$, hence either $r_k b_l x_v \subseteq (A_{\mathbb{R}} x_v)$ or $r_k^2 \subseteq (A_{\mathbb{R}} X)$. Thus $(A_{\mathbb{R}} x_v)$ is a semi T-ABSO F. ideal of R.

The following proposition is a characterization of a semi T-ABSO F. subm.

Proposition 2.14. Let *A* be F. subm. of F. M. X of an R- M. *M*. Then *A* is a semi T-ABSO F. subm. of X iff $(A_{:R} r_k^2 x_v) = (A_{:R} r_k x_v)$ or $r_k^2 \subseteq (A_{:R} X)$ for each F. singletons r_k of R and $x_v \subseteq X$, $\forall k, v \in L$.

Proof. (\Rightarrow) Assume that $r_k^2 \not\subseteq (A_{:_R} X)$. To show that $(A_{:_R} r_k^2 x_v) = (A_{:_R} r_k x_v)$.

It is observe that $(A_{:_R} r_k x_v) \subseteq (A_{:_R} r_k^2 x_v)$. Now, let $a_s \subseteq (A_{:_R} r_k^2 x_v)$, hence $r_k^2 a_s x_v \subseteq A$. Since A is semi T-ABSO F. subm. and $r_k^2 \not\subseteq (A_{:_R} X)$, hence $r_k a_s x_v \subseteq A$,

so that $a_s \subseteq (A:_R r_k x_v)$. Then $(A:_R r_k^2 x_v) = (A:_R r_k x_v)$.

(⇐) Let $r_k^2 x_v \subseteq A$, hence $(A:_R r_k^2 x_v) = \lambda_R$ where $\lambda_R(y) = \begin{cases} 1 & \text{if } y \in R \end{cases}$

lo o.w.

But $(A:_R r_k^2 x_v) = (A:_R r_k x_v)$ or $r_k^2 \subseteq (A:_R X)$ by hypothesis.

Thus $(A_{:_R} r_k x_v) = \lambda_R$ and then $r_k x_v \subseteq A$. So that either $r_k x_v \subseteq A$ or $r_k^2 \subseteq (A_{:_R} X)$.

Definition 2.15. Let $f: \dot{M}_1 \rightarrow \dot{M}_2$ be a mapping and X_1, X_2 be F. M. of an R- M. \dot{M}_1, \dot{M}_2 resp., then F. kernel of a mapping f denoted by F-ker(f) is F. subm. of X_1 defined by: F-ker $(f)=\{x_v: x_v \subseteq X_1 \text{ such that } f(x_v) = 0_1\}, \forall v \in L.$

Proposition 2.16. Let X_1 , X_2 be F. M. of an R- M. \dot{M}_1 , \dot{M}_2 resp. Let $f: \dot{M}_1 \rightarrow \dot{M}_2$ be an epimorphism and A is a semi T-ABSO F. subm. of X_1 such that F- ker $f \subseteq A$. Then f(A) is semi T-ABSO F. subm. of X_2 .

Proof. Let $r_k^2 y_h \subseteq f(A)$ for F. singletons r_k of R and $y_h \subseteq X_2$. Since f is onto, so $y_h = f(x_v)$ for some F. singleton $x_v \subseteq X_1$, then $r_k^2 f(x_v) = f(a_s)$ for F. singleton $a_s \subseteq A$. Then $r_k^2 x_v - a_s \subseteq F - \ker f \subseteq A$, thus $r_k^2 x_v \subseteq A$. But A is a semi T-ABSO F. subm., hence $r_k x_v \subseteq A$ or $r_k^2 \subseteq (A:_R X_1)$. If $r_k x_v \subseteq A$ then $r_k f(x_v) \subseteq f(a_s)$, hence $r_k y_h \subseteq f(A)$. If $r_k^2 \subseteq (A:_R X_1)$, then $r_k^2 X_1 \subseteq A$, hence $r_k^2 f(X_1) \subseteq f(A)$, thus $r_k^2 \subseteq (f(A):_R f(X_1))$. But $f(X_1) = f(X_1)$

 X_2 since f is onto, hence $r_k^2 \subseteq (f(A):_R X_2)$.

Remark 2.17. The condition f is an epimorphism in above proposition can't dropped, as can be proved by the following example:

Let
$$X_1: \mathbb{Z} \to \mathbb{L}$$
 such that $X_1(y) = \begin{cases} 1 & \text{if } y \in \mathbb{Z} \\ 0 & o.w. \end{cases}$
Let $X_2: \mathbb{Z} \to \mathbb{L}$ such that $X_2(y) = \begin{cases} 1 & \text{if } y \in \mathbb{Z} \\ 0 & o.w. \end{cases}$

It is obvious that X_1, X_2 are F. M. of Z-M. Z. Let $f: X_1 \to X_2$ be F. homomorphism if $f: Z \to Z$ with f(n) = 9n be homomorphism but not epimorphism, $\forall n \in Z$ Let $A: Z \to L$ such that $A(n) = \begin{cases} v & \text{if } y \in 4Z \\ v \in L \end{cases}$

Let A: Z \to L such that $A(y) = \begin{cases} v & \text{if } y \in 4Z \\ 0 & o.w. \end{cases}$ It is obvious that A is F. subm. of X_1 .

Now, $A_v = 4Z$, $(X_1)_v = Z$ and $(X_2)_v = Z$. $A_v = 4Z$ is a semi T-ABSO subm., but f(4Z) = 36Z is not semi T-ABSO since $2^2.9 \in 36Z$, but $2^2 \notin 36Z$ and 2. $9 \notin 36Z$. So that A is a semi T-ABSO F. subm., but f(A) is not semi T-ABSO F. subm.

Proposition 2.18. Let X_1, X_2 be F. M. of an R- M. M_1, M_2 resp. Let $f: M_1 \rightarrow M_2$ be an epimorphism, B is a semi T-ABSO F. subm. of X_2 . Then $f^{-1}(B)$ is a semi T-ABSO F. subm. of X_1 . **Proof.** Let $r_k^2 x_v \subseteq f^{-1}(B)$ for F. singletons r_k of R and $x_v \subseteq X_1$, hence $f(r_k^2 x_v) \subseteq B$ so $r_k^2 f(x_v) \subseteq B$. Since B is semi T-ABSO F. subm., then either $r_k f(x_v) \subseteq B$ or $r_k^2 \subseteq (B:_R X_2)$, so that $r_k x_v \subseteq f^{-1}(B)$ or $r_k^2 \subseteq (B:_R X_2)$. If $r_k^2 \subseteq (B:_R X_2)$, then $r_k^2 X_2 \subseteq B$, hence $r_k^2 f(X_1) \subseteq B$. So that

If $r_k^2 \subseteq (B_{:R}X_2)$, then $r_k^2X_2 \subseteq B$, hence $r_k^2f(X_1) \subseteq B$. So that $r_k^2X_1 \subseteq f^{-1}(B)$. Then $r_k^2 \subseteq (f^{-1}(B)_{:R}X_1)$. So that either $r_kx_v \subseteq f^{-1}(B)$ or $r_k^2 \subseteq (f^{-1}(B)_{:R}X_1)$.

Recall that "A F. ideal K of a ring R is called a principle F. ideal if there exists $x_v \subseteq K$ such that $K = \langle x_v \rangle$. For each $a_s \subseteq K$, there exists F. singleton b_l of R such that $a_s = b_l x_v$ where $v, s, l \in L$, that is $K = \langle x_v \rangle = \{a_s \subseteq K : a_s = b_l x_v \text{ for some F. singleton } b_l \text{ of R}\},$ [10]".

Proposition 2.19. Let R be a principle F. ideal ring (P. F.I.R) and X be F. M. of an R- M. M. Let A be a proper F. subm. of X and \hat{H} be F. ideal of R. Then A is a semi T-ABSO F. subm. of X iff $\hat{H}^2 x_v \subseteq A$ implies $\hat{H} x_v \subseteq A$ or $\hat{H}^2 \subseteq (A:_R X)$ for any F. ideal \hat{H} of R and F. singleton $x_v \subseteq X$.

Proof. (\Rightarrow) Suppose that \hat{H} be F. ideal of R and F. singleton $x_v \subseteq X$. Since R is P. F.I.R , hence $\hat{H} = \langle r_k \rangle$ for some F. singleton r_k of R. If $\hat{H}^2 x_v \subseteq A$ then $\langle r_k \rangle^2 x_v \subseteq A$, thus $r_k^2 x_v \subseteq A$, then either $r_k x_v \subseteq A$ or $r_k^2 \subseteq (A:_R X)$. Hence $\hat{H} x_v \subseteq A$ or $\hat{H}^2 \subseteq (A:_R X)$

Recall that "Let *A* and *B* be two F. subms of F. M. *X*. If X=A+B and $A \cap B=0_1$, then *X* is called F. internal direct sum of *A* and *B* and denoted by $A \oplus B$. Define by:

 $(A \oplus B)(a,b) = \min\{A(a), B(b) \text{ for all } (a,b) \in M_1 \oplus M_2\}$ Moreover, *A* and *B* are called direct summand of *X*, [6]".

Proposition 2.20. Let $X = X_1 \oplus X_2$ be F. M. of an R- M. $M = M_1 \oplus M_2$ where X_1, X_2 be F. M. of an R- M. M_1, M_2 resp.. Let A, *B* be proper F. subms of X_1, X_2 resp., then

1- *A* is semi T-ABSO F. subm. in X_1 iff $A \oplus X_2$ is semi T-ABSO F. subm. in $X_1 \oplus X_2 = X$.

2- B is semi T-ABSO F. subm. in X_2 iff $X_1 \oplus B$ is semi T-ABSO F. subm. in $X_1 \oplus X_2 = X$.

Proof. (1) (\Rightarrow) Let $r_k^2(x_v, y_h) \subseteq A \oplus X_2$ for F. singletons r_k of R and $(x_v, y_h) \subseteq X$. Hence $r_k^2 x_v \subseteq A$ and $r_k^2 y_h \subseteq X_2$. Since A is semi T-ABSO F. subm. in X_1 , then either $r_k x_v \subseteq A$ or $r_k^2 \subseteq (A:_R X_1)$. So that $r_k(x_v, y_h) \subseteq A \oplus X_2$ or $r_k^2 \subseteq (A \oplus X_2:_R X_1 \oplus X_2)$. Then $A \oplus X_2$ is semi T-ABSO F. subm. in $X_1 \oplus X_2 = X$.

(⇐) Let $r_k^2 x_v \subseteq A$ for F. singletons r_k of R and $x_v \subseteq X_1$, hence for any F. singleton $y_h \subseteq X_2$, $r_k(x_v, y_h) \subseteq A \oplus X_2$. Since $A \oplus X_2$ is a semi T-ABSO F. subm. in X, then either $r_k(x_v, y_h) \subseteq A \oplus X_2$ or $r_k^2 \subseteq (A \oplus X_2:_R X_1 \oplus X_2) = (A:_R X_1)$. So that $r_k x_v \subseteq A$ or $r_k^2 \subseteq (A:_R X_1)$. Then A is semi T-ABSO F. subm. in X_1 . (2) The proof by the same method in (1).

Proposition 2.21. Let X_1 , X_2 be F. M. of an R M. M_1 , M_2 resp. and $X = X_1 \oplus X_2$ be F. M. of an R- M. $M = M_1 \oplus M_2$ such that $F - ann X_1 \oplus F - ann X_2 = \lambda_R$ where $\lambda_R(y) = 1$, $\forall y \in \mathbb{R}$. Let A be a semi T-ABSO F. subm. of X, then either

1- $A = A_1 \bigoplus X_2$ and A_1 is a semi T-ABSO F. subm. in X_1 or

2- $A = X_1 \oplus A_2$ and A_2 is a semi T-ABSO F. subm. in X_2 or

3- $A = A_1 \oplus A_2$ and A_1 is a semi T-ABSO F. subm. in X_1 and A_2 is a semi T-ABSO F. subm. in X_2 .

Proof. Since $f - annX_1 \oplus f - annX_2 = \lambda_R$ where $\lambda_R(y) = 1$, $\forall y \in \mathbb{R}$, then by [5], $A = A_1 \oplus A_2$ for some F. subm. A_1 of X_1 and A_2 of X_2 . Then we have:

(1) $A_1 < X_1$ and $A_2 = X_2$.

(2) $A_1^1 = X_1^1$ and $A_2^2 < X_2^2$.

(3) $A_1 < X_1$ and $A_2 < X_2$.

Case(1) and case(2), we get $A = A_1 \oplus X_2$ or $A = X_1 \oplus A_2$. Then A_1 is semi T-ABSO F. subm. in X_1 or A_2 is semi T-ABSO F. subm. in X_2 by Proposition (2.20).

Case(3): Suppose that $r_k^2 x_v \subseteq A$ for F. singletons r_k of R and $x_v \subseteq X_1$. Hence $r_k^2(x_v, 0_1) \subseteq A_1 \oplus A_2 = A$. But A be a semi T-ABSO F. subm. of X, then either $r_k(x_v, 0_1) \subseteq A$ or $r_k^2 \subseteq (A_{1:R} X) \subseteq (A_{1:R} X_1)$ implies that $r_k x_v \subseteq A_1$ or $r_k^2 \subseteq (A_{1:R} X_1)$. Then A_1 is a semi T-ABSO F. subm. in X_1 .

By the same method we get A_2 is a semi T-ABSO F. subm.. in X_2

"Definition 2.22. A F. M. X of an R-M. M is called a duo F. M. if for each F. subm. A of X, A is fully invariat, [5]".

Note: If $X = X_1 \oplus X_2$ be F. M. of an R- M. $\dot{M} = \dot{M}_1 \oplus \dot{M}_2$ is a duo F. M. or a distributive F. M. see[9], we can have the same inference of Proposition (2.21).

Proposition 2.23. Let X_1 , X_2 be F. M. of an R- M. M_1 , M_2 resp. and A_1 , A_2 are semi T-ABSO F. subms of X_1 , X_2 resp. such that $(A_1:_R X_1) = (A_2:_R X_2)$. Then $A = A_1 \oplus A_2$ is a semi T-ABSO F. subm. of $X = X_1 \oplus X_2$.

Proof. Let $r_k^2(x_v, y_h) \subseteq A_1 \oplus A_2$, so that $r_k^2 x_v \subseteq A_1$ and $r_k^2 y_h \subseteq A_2$. Since A_1, A_2 are semi T-ABSO F. subms, then $r_k x_v \subseteq A_1$ or $r_k^2 \subseteq (A_{1:R} X_1)$ and $r_k y_h \subseteq A_2$ or $r_k^2 \subseteq (A_{2:R} X_2) = (A_{1:R} X_1)$, hence $r_k x_v \subseteq A_1$ and $r_k y_h \subseteq A_2$ or $r_k^2 \subseteq (A_{1:R} X_1)$.

Then $r_k(x_v, y_h) \subseteq A_1 \oplus A_2$ or $r_k^2 \subseteq (A_R X)$. Thus A is a semi T-ABSO F. subm. of X.

3. Semi T-ABSO F. M.

In this section we present the concept of semi T-ABSO F. M. Some of properties and relationships with other classes of F. M. are illustrated.

First, we give the following definition.

Definition 3.1. A F. M. X of an R- M. M is called T-ABSO F. M. if the zero F. subm. (0_1) is T-ABSO F.; that is if for each F. singleton a_s , b_l of R and $x_v \subseteq X$, $\forall s, l, v \in L$, such that $a_s b_l x_v = 0_1$ implies $a_s x_v = 0_1$ or $b_l x_v = 0_1$ or $a_s b_l \subseteq F - annX$.

Now, we present the concept of a semi T-ABSO F. M. as follows:

Definition 3.2. Let X be F. M. of an R- M. M. X is called a semi T-ABSO F. M. if 0_1 is a semi T-ABSO F. subm. of X.

The proposition specificities a semi T-ABSO F. M. in terms of its level M. is given:

Proposition 3.3. Let X be F. M. of an R- M. M. Then X is a semi T-ABSO F. M. iff the level X_v is a semi T-ABSO M., $\forall v \in L$.

Proof. (\Rightarrow) Let $a^2x = 0$ for each $a \in \mathbb{R}$, $x \in X_v$, $\forall v \in \mathbb{L}$, then $(a^2x)_v \subseteq 0_v \subseteq 0_1$, hence $a_s^2x_k \subseteq 0_1$ where $v=\min\{s, k\}$ and $(a^2)_s = a_s^2$. But 0_1 is a semi T-ABSO F. subm. by Definition (3.2), then either $a_sx_k \subseteq 0_1$ or $a_s^2 \subseteq (0_1:_R X) = F - annX$, hence $(ax)_v \subseteq 0_1$ or $(a^2)_v \subseteq F - annX$, implies ax = 0 or $a^2 \in annX_v$. Then (0) is a semi T-ABSO subm. of X_v .

(⇐) Let $a_s^2 x_k \subseteq 0_1$ for F. singleton a_s of R and $x_v \subseteq X$, then $(a^2 x)_v \subseteq 0_1$ where $v = \min\{s, k\}$, hence $0_1(a^2 x) \ge v$. If $a^2 x \ne 0$, then $0_1(a^2 x) = 0 \ge v$ which is a contradiction. so that $a^2 x = 0$. But (0) is a semi T-ABSO subm. of X_v , then either ax = 0 or $a^2 \in ann X_v$, hence $(ax)_v \subseteq 0_1$ or $(a^2)_v \subseteq F - ann X$, so that $a_s x_k \subseteq 0_1$ or $a_s^2 \subseteq F - ann X$. Thus 0_1 is semi T-ABSO F. subm. of X.

Remarks and Examples 3.4.

(1) Every semiprime F. M. is a semi T-ABSO F. M., but the converse incorrect, for example:

Let X: $Z_{49} \rightarrow L$ such that X(y)= $\begin{cases} 1 & \text{if } y \in Z_{49} \\ 0 & o.w. \end{cases}$

It is obvious that X be F. M. of Z- M. Z_{49} .

 $X_v = Z_{49}$ as Z- M. is a semi T-ABSO M. since 7^2 . $\overline{1} = 0$ implies $7^2 \in (0_{Z}Z_{49}) = 49Z$, but X_v is not semiprime M. since 7. $\overline{1}\neq 0$. So that X is a semi T-ABSO F. M., but it is not semiprime F. M. by [12].

(2) Every T-ABSO F. M. is a semi T-ABSO F. M.

(3) Every quasi-prime F. M. is a semi T-ABSO F. M. But the converse incorrect see the example in part(1) where $X_v = Z_{49}$ as Z- M. is semi T-ABSO M., but X_v is not quasi-prime M. since 7.7. $\bar{1}=0$ and 7. $\bar{1}\neq 0$, So that X is semi T-ABSO F. M., but it is not quasi-prime F. M. by [6].

(4) Every F. subm. of a semi T-ABSO F. M. is a semi T-ABSO F. M.

Proposition 3.5. Let X be F. M. of an R- M. M. If X is a semi T-ABSO F. M., then $F - ann_R X$ is semi T-ABSO F. ideal.

Proof. Since X is semi T-ABSO F. M., then 0_1 is semi T-ABSO F. subm. By Proposition (2.8) when $A=0_1$, we have $(0_1:_R X) = F - ann_R X$ is a semi T-ABSO F. ideal.

Proposition 3.6. Let X be a multiplication F. M.of an R- M. M. Then X is a semi T-ABSO F. M. iff $F - ann_R X$ is a semi T-ABSO F. ideal.

Proof. (\Longrightarrow) By Proposition (3.5), we get the outcome.

 (\Leftarrow) By Proposition (2.9), we get the outcome.

Corollary 3.7. Let X be a faithful multiplication F. M. of an R- M. \acute{M} . Then the following expressitions are equivalent:

- 1-X is a semi T-ABSO F. M.;
- 2- R is a semi T-ABSO F. ring.

Proof. (1) Since X is a semi T-ABSO F. M., so that $F - ann_R X$ is semi T-ABSO F. ideal by Proposition (3.6). But $F - ann_R X = 0_1$, hence 0_1 is semi T-ABSO F. ideal. Then R is semi T-ABSO F. ring. (2) Since R is a semi T-ABSO F. ring, so that 0_1 is semi T-ABSO F. ideal, but $0_1 = F - ann_R X$ since X is a faithful. Then X is semi T-ABSO F. M. by Proposition (3.6).

Proposition 3.8. Let X be F. M. of an R- M. M such that F – $ann_{R}X$ is a semiprime F. ideal of R. Then X is semi T-ABSO F. M. iff X is semiprime F. M.

Proof. (\Rightarrow) Let $r_k^2 x_v \subseteq 0_1$ for F. singletons r_k of R and $x_v \subseteq X$. Since X is semi T-ABSO F. M., then $r_k x_v \subseteq 0_1$ or $r_k^2 \subseteq$ $(0_1:_R X) = F - ann_R X$. Hence $r_k x_v \subseteq 0_1$ or

 $r_k \subseteq F - ann_R X$ since $F - ann_R X$ is semiprime F. ideal of R. Thus $r_k x_v \subseteq 0_1$, $\forall x_v \subseteq X$. Then 0_1 is semiprime F. subm.. So that X is semiprime F. M. by [11]. (\Leftarrow) It is obvious.

Proposition 3.9. Let X be F. M. of an R-M. M. If X is a semi T-ABSO F. M., then $F - ann_R A$ is semi T-ABSO F. ideal for each non-constant F. subm. A of X.

Proof. Let A be a non-empty F. subm. of X and $F - ann_R A \neq \lambda_R$ because if $F - ann_R A = \lambda_R$, then $A = 0_1$ which is a contradiction. Now, suppose that $r_k^2 a_s \subseteq F - ann_R A$ for F. singletons r_k , a_s of R. Hence $r_k^2 a_s A \subseteq 0_1$. Since **X** is semi T-ABSO F. M., then either $r_k a_s A \subseteq 0_1$ or $r_k^2 \subseteq (0_{1:R} X)$ by Proposition (2.7). Hence either $r_k a_s \subseteq F - ann_R A$ or $r_k^2 \subseteq F - ann_R A$ since $F - ann_R X \subseteq F$ $F - ann_R A$ by [6]. Thus $F - ann_R A$ is semi T-ABSO F. ideal.

Recall that "A ring R is said to be an integral domain if R has no zero-divisor F. singleton (i.e. if a_v is F. singleton of $R \exists b_l$ is F. singleton of R such that $a_{\nu}b_{l} = 0_{1}$, $\forall \nu, l \in L$, implies $a_{\nu} = 0_{1}$ or $b_l = 0_1$), [16]".

Recall that " A F. subm A of F. M. X is called a divisible F. if for each F. singleton $x_v \subseteq A$ there exists F. singleton $y_h \subseteq A$ and for each $r \in \mathbb{R}$, $r \neq 0$, $x_v = ry_h$ where $(ry)_h = ry_h$, X is called a divisible F. M. if X is F. divisible subm. of itself, [14]".

Proposition 3.10. Let R is an integral domain and X is a non-empty divisible F. M. of an R-M. M. Then X is semi T-ABSO F. M. iff X is quasi-prime F. M

Proof. (\Longrightarrow) Let $r_k a_s x_v \subseteq 0_1$ for F. singletons r_k , a_s of R and $x_v \subseteq X$.

If $r_k a_s \subseteq 0_1$, then $r_k \subseteq 0_1$ or $a_s \subseteq 0_1$, so that $r_k x_v \subseteq 0_1$ or $a_s x_v \subseteq 0_1$.

If $r_k a_s \not\subseteq 0_1$, then $r_k \not\subseteq 0_1$ or $a_s \not\subseteq 0_1$ since R is an integral domain.

If $r_k x_v \subseteq 0_1$, then the proof is complete.

If $r_k x_v \not\subseteq 0_1$, $r_k \not\subseteq 0_1$ and X is a divisible F. M., hence $r_k X = X$, then $x_v = r_k y_h$ for F. singleton $y_h \subseteq X$, thus $r_k a_s x_v = r_k a_s r_k y_h =$ $r_k^2 a_s y_h \subseteq 0_1$. But 0_1 is semi T-ABSO F. subm., then either $r_k a_s y_h \subseteq 0_1$ or $r_k^{\overline{2}} \subseteq F - ann_R X$. If $r_k^2 \subseteq F - ann_R X$ then $r_k^2 X \subseteq 0_1$, but $r_k \not\subseteq 0_1$ hence $r_k^2 \not\subseteq 0_1$. Then $r_k^2 X = X \subseteq 0_1$ this is a contradiction. Thus $r_k^2 \notin F - ann_R X$, then $r_k a_s y_h \subseteq 0_1$ so that $a_s x_v \subseteq 0_1$. Thus 0_1 is quasi-prime F. subm.

 (\Leftarrow) It is obvious.

Corollary 3.11. Let R be an integral domain and X is a non-empty divisible F. M. of an R- M. M. Then the following expressions are equivalent:

(1) X is a semi T-ABSO F. M.

(2) X is a quasi-prime F. M. (3) X is a prime F. M. **Proof.** (1) \Leftrightarrow (2) It follows by Proposition(3.10). $(2) \Leftrightarrow (3)$ It follows by [6]. $(3) \Leftrightarrow (1)$ It follows by [11, 6] and Proposition(3.10).

Proposition 3.12. A F. M. X of an R-M. M is a semi T-ABSO F. M. iff either $F - ann r_k x_v = F - ann r_k^2 x_v$ for any F. singletons r_k of R and $x_v \subseteq X$ such that $r_k x_v \not\subseteq 0_1$ or $r_k^2 X \subseteq 0_1$. **Proof.** (\Longrightarrow) Let $a_s \subseteq F - ann r_k^2 x_v$, $r_k^2 x_v \notin 0_1$. Then $r_k^2 a_s x_v \subseteq 0_1$. But X is a semi T-ABSO F. M. and $r_k^2 \not\subseteq F$ ann X, hence $r_k a_s x_v \subseteq 0_1$, so that $a_s \subseteq F - ann r_k x_v$. Then $F - ann r_k x_v = F - ann r_k^2 x_v \, .$ (\Leftarrow) It is obvious.

Proposition 3.13. Let $X = X_1 \oplus X_2$ be F. M. of an R- M. $M = X_1 \oplus X_2$ $\dot{M}_1 \bigoplus \dot{M}_2$. If X is semi T-ABSO F. M., then X_1 and X_2 are semi T-ABSO F. M.

Proof. By Remarks and Examples(3.4) part(4) the outcome hold.

Remark 3.14. The converse of Proposition(3.13) is not true always, for example:

Let X: $Z_2 \oplus Z_{49} \rightarrow L$ such that $X(x,y) = \begin{cases} 1 & if (x,y) \in Z_2 \oplus Z_{49} \\ 0 & o.w. \end{cases}$ It is obvious that X be F. M. of Z- M. $Z_2 \oplus Z_{49}$ And $X_1: Z_2 \to L$ such that $X_1(x) = \begin{cases} 1 & \text{if } x \in Z_2 \\ 0 & o.w. \end{cases}$ It is obvious that X_1 be F. M. of Z- M. Z_2 . $X_2: Z_{49} \to L \text{ such that } X_2(y) = \begin{cases} 1 & \text{if } \overline{y} \in Z_{49} \\ 0 & o.w. \end{cases}$ It is obvious that X_2 be F. M. of Z- M. Z_{49} . Now, $X_v = Z_2 \oplus Z_{49}$ as Z- M. where $(X_1)_v = Z_2$ and $(X_2)_v = Z_{49}$ are semi T-ABSO M., but $X_v = Z_2 \oplus Z_{49}$ is not semi T-ABSO M. since $7^{2}(\bar{0},\bar{1}) = (\bar{0},\bar{0})$, but $7(\bar{0},\bar{1}) = (\bar{0},\bar{7}) \neq (\bar{0},\bar{0})$ and $7^{2} \notin$ $annX_v = annZ_2 \cap annZ_{49} = 2Z \cap 49Z = 98Z$. So that X_1 and X_2 are semi T-ABSO F. M. but X is not semi T-ABSO F.

Theorem 3.15. Let $X = X_1 \oplus X_2$ be F. M. of an R- M. M = $\dot{M}_1 \oplus \dot{M}_2$ where X_1 and X_2 be prime F. M. Then $X = X_1 \oplus X_2$ is semi T-ABSO F. M.

Proof. Let $r_k^2(x_v, y_h) \subseteq (0_1, 0_1)$ for F. singletons r_k of R and $(x_v, y_h) \subseteq X$. Hence $r_k^2 x_v \subseteq 0_1$ and $r_k^2 y_h \subseteq 0_1$, then $r_k(r_k x_v) \subseteq$ 0_1 and $r_k(r_k y_h) \subseteq 0_1$. Since X_1 and X_2 be a prime F. M., then either($r_k x_v \subseteq 0_1$ or $r_k \subseteq F - ann X_1$) and $(r_k y_h \subseteq 0_1)$ $r_k \subseteq F - annX_2$)

Then there exist four case:

M.

1) If $r_k x_v \subseteq 0_1$ and $r_k y_h \subseteq 0_1$, then $r_k (x_v, y_n) \subseteq 0_1$.

2) If $r_k \subseteq F - ann X_1$ and $r_k \subseteq F - ann X_2$, then $r_k \subseteq F - ann X_2$. $ann X_1 \cap F - ann X_2 = F - ann X$, but $r_k \subseteq F - ann X$ implies $r_k^2 \subseteq F - annX.$

3) If $r_k x_v \subseteq 0_1$ and $r_k \subseteq F - ann X_2$, then $r_k x_v \subseteq 0_1$ and $r_k y_h \subseteq 0_1$, hence $r_k (x_v, y_h) \subseteq 0_1$.

4) If $r_k \subseteq F - ann X_1$ and $r_k y_h \subseteq 0_1$, then $r_k x_v \subseteq 0_1$ and $r_k y_h \subseteq 0_1$, hence $r_k(x_v, y_h) \subseteq 0_1$. Then X is a semi T-ABSO F. M.

Remarks 3.16.

(1) By an application of Theorem(3.15), each of the following F. M. is a semi T-ABSO F. M. of an R- M. Z.

 $X:Z_p \oplus Z_p \longrightarrow L$, $X:Z_p \oplus Z \longrightarrow L$, $X:Q \oplus Z \longrightarrow L$, $X:Z_p \oplus Z_q \longrightarrow L$, X: $Z \oplus Z \rightarrow L$ and X: $Q \oplus Q \rightarrow L$ where p, q are two prime numbers. (2) The condition X_1 and X_2 be prime F. M. can't deleted from Theorem (3.15), see Remarks (3.14) where $X_v = Z_2 \bigoplus Z_{49}$ as Z- M. , $(X_1)_v = Z_2$ as Z- M. is a prime M. and $(X_2)_v = Z_{49}$ as Z- M. is not prime M. also $X_v = Z_2 \oplus Z_{49}$ is not semi T-ABSO M., then X_1 is prime F. M., X₂ is not prime F. M. and X is not semi T-ABSO F. M.

Proposition 3.17. Let $X = X_1 \oplus X_2$ be F. M. of an R- M. $M = X_1 \oplus X_2$ $\dot{M}_1 \oplus \dot{M}_2$ such that $F - annX_1 = F - annX_2$. Then X is semi T-ABSO F. M. iff X_1 and X_2 are semi T-ABSO F. M.

Proof. (\Leftarrow) Let $r_k^2(x_v, y_h) \subseteq (0_1, 0_1)$ for F. singletons r_k of R and $(x_v, y_h) \subseteq X$.

Hence $r_k^2 x_v \subseteq 0_1$ and $r_k^2 y_h \subseteq 0_1$. Since X_1 and X_2 be a semi T-ABSO F. M., then either $(r_k x_v \subseteq 0_1 \text{ or } r_k^2 \subseteq F - ann X_1)$ and $(r_k y_h \subseteq 0_1 \text{ or } r_k^2 \subseteq F - ann X_2 = F - ann X_1)$. Thus $(r_k x_v \subseteq 0_1)$ and $r_k y_h \subseteq 0_1$ or $r_k^2 \subseteq F - ann X_1$. Then $r_k(x_v, y_h) \subseteq (0_1, 0_1)$ or $r_k^2 \subseteq F - annX_1 = F - annX_1 \cap F - annX_2 = F - annX$. So that X is semi T-ABSO F. M.

 (\Leftarrow) It is obvious.

Remarks 3.18. The condition $F - annX_1 = F - annX_2$ is obligate for Proposition (3.17), so we can't dropped it, we see the following example: $(1 \quad if(x,y) \in 7 \oplus 0)$

Let X:
$$Z_9 \oplus Q \to L$$
 such that $X(x,y) = \begin{cases} 1 & if (x, y) \in Z_9 \oplus Q \\ 0 & o.w. \end{cases}$
It is obvious that X be F. M. of Z- M. $Z_9 \oplus Q$.
And $X_1: Z_9 \to L$ such that $X_1(x) = \begin{cases} 1 & if x \in Z_9 \\ 0 & o.w. \end{cases}$
It is clear that X_1 is F. M. of Z- M. Z_9 .
 $X_2: Q \to L$ such that $X_2(y) = \begin{cases} 1 & if y \in Q \\ 0 & o.w. \end{cases}$
It is obvious that X_2 be F. M. of Q as Z- M.
Now, $X_v = Z_9 \oplus Q$ as Z- M. and $(X_1)_v = Z_9$ as Z- M.,
 $(X_2)_v = Q$ as Z- M., where $X_v = Z_9 \oplus Q$ is not semi T-ABSO M.
since $3^2(\bar{1}, \bar{0}) = (\bar{0}, \bar{0})$, but $3(\bar{1}, \bar{0}) \neq (\bar{0}, \bar{0})$ and $3^2 \notin annX_v = 3^2$

 $ann_Z Z_9 \cap ann_Z Q = 0$, but each of $(X_1)_v = Z_9$ as Z- M., $(X_2)_v = Q$ as Z-M. is a semi T-ABSO M. and $ann_Z Z_9 = 9Z \neq$ $ann_Z Q = 0$. So that X is not semi T-ABSO F. M., but X_1 and X_2 are semi T-ABSO F. M. and $F - annX_1 \neq F - annX_2$.

Proposition 3.19. The following expressions are equivalent for F. M. X of an R-M. M

- (1) X is a semi T-ABSO F. M.
- (2) $F ann_x \hat{H}$ is a semi T-ABSO F. subm. for each F. ideal \hat{H} of R with $\hat{H} \not\subseteq F - annX$.

(3) $F - ann_X < a_s > \text{ is a sem T-ABSO}$ F. subm. for each F. singleton a_s of R with $a_s \not\subseteq F - annX$, $\forall s \in L$.

Proof. It follows by Proposition (2.12) with $A=0_1$.

Now, we give the concept of a comultiplication F. M. as follows:

Definition 3.20. A F. M. X of an R-M. \dot{M} is called a comultiplication F. M. if $A=F - ann_XF - ann_RA$ for each F. subm. A of X.

Proposition 3.21. If X is a semi T-ABSO comultiplication F. M. of an R-M. M. Then every proper F. subm. of X is a semi T-ABSO F. subm.

Proof. Let A be a proper F. subm. of X, hence $A = F - ann_X F - ann_X F$ $ann_R A$. Put $F - ann_R A = \hat{H}$, so that $A = F - ann_X \hat{H}$. But $\hat{H} \not\subseteq F - ann_R X$ since if $\hat{H} \subseteq F - ann_R X$ hence $F - ann_R X =$ $F - ann_R A$ and then A = X which is a contradication.

Then by Proposition (3.18), $A = F - ann_X \hat{H}$ is semi T-ABSO F. subm. Hence every proper F. subm. A of X is semi T-ABSO F

References

- [1] Abdulrahman A.H., 2-Absorbing Submodules (Modules) and Some of Their Generalizations. M.Sc. Thesis, University of Baghdad, 2015.
- [2] Darani, A.Y. and Soheilnia, F., 2-Absorbing and Weakly 2-Absorbing Submodules, Thai Journal of Mathematics, Vol.9, No.3, 2011, pp.577-584.
- [3] Deniz S., Gürsel Y., Serkan O., Bayram A. E. and Bijan D., On 2-Absorbing Primary Fuzzy Ideals of Commutative Rings, Hindawi, Mathematical Problems in Engineering, Vol.2017, 2017, pp. 1-7.
- [4] Hadi, I. M.A., Semiprime Fuzzy Submodules of Fuzzy Modules, Ibn-Al-Haitham J. for Pure and Appl. Sci., Vol.17, No.3, 2004, pp.112-123.
- [5] Hadi, G. Rashed, Fully Cancellation Fuzzy Modules and Some Generalizations. M.Sc. Thesis, University of Baghdad, 2017.
- [6] Hatam, Y. K., Fuzzy Quasi-Prime Modules and Fuzzy Quasi-Prime Submodules, M.Sc. Thesis, University of Baghdad, 2001.
- [7] Hatam Y. Khalaf and Wafaa H. Hannon, Small and Classical T-ABSO Fuzzy Submodules, Global Journal of Pure and Applied Mathematics, Vol.14 No.3, 2018, pp. 443–457.
- [8] Inaam, M.A. Hadi and Maysoun, A. Hamil., Cancellation and Weakly Cancellation Fuzzy Modules" Journal of Basrah Reserches ((Sciences)), Vol.37, No. 4, 2011.
- [9] Inaam, M. A. Hadi and Shroog. B.Semeein, Fuzzy Distributive Modules, Ibn AL- Haitham J. for Pure & Appl. Sci., Vol.24, No.1, 2011.
- [10] Martinez, L., Fuzzy Modules Over Fuzzy Rings in Connection With Fuzzy Ideals of Rings, J. Fuzzy Math., Vol.4, 1996, pp.843-857.
- [11] Maysoun A. H., Semiprime Fuzzy Modules, Ibn Al-Haitham Journal for Pure and Applied Science, Vol.25, No.1, 2012.
- [12] Mohammed M. R. AL-Shamiri, On Fuzzy Semiprime Submodules, International Journal of Innovation and Applied Studies, Vol.13, No.4, 2015, pp.929-934.
- [13] Mukhrjee, T. K., Prime Fuzzy Ideals in Rings, Fuzzy Sets and Systems, Vol.32, 1989, pp.337-341.
- [14] Qaid, A. A., Some Results on Fuzzy Modules. M.Sc., Thesis, University of Baghdad, 1999.
- [15] Rabi H.J., Prime Fuzzy Submodules and Prime Fuzzy Modules. M.Sc. Thesis, University of Baghdad, 2001.
- [16] Wafaa R. H., (1999), "Some Results of Fuzzy Rings", M.Sc. Thesis University of Baghdad.
- [17] Zahedi, M. M, On L-Fuzzy Residual Quotiet Modules and P-Primary Submodules, Fuzzy Sets and Systems, Vol.51, 1992, pp. 333-344.

M.