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Abstract: Let R be an associative ring with identity and let M be a left R- module. As a generalization of essential submodules Zhou defined
an F- essential submodules provided it has a nonzero intersection with any nonzero submodule in F where F is a collection of R- modules
such that if M €T, then M' € F for any module M" isomorphic to M. In this article we study p*- essential submodules as a dual of p-small
submodules provided it has a nonzero intersection with any nonzero singular submodule of M. Also we define and investigate p*-extending

modules with some examples and basic properties.
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1. Introduction

Let R be an associative ring with unity and let M be
unitary left R- module. A submodule A of M is said to be
essential in M, (denoted by A<, M), if for any submodule B
of M, ANB =0 implies B = 0 [1], and a submodule A of M
is said to be closed in M if A has no proper essential
extension in M; that is if A<, B <M, then A = B [1]. An R-
module M is called extending (or CS- module) , if every
submodule of M is essential in a direct summand of M. It is
well known that an R- module M is extending if and only if
every closed submodule of M is a direct summand [2]. A
submodule A of M is called p- small submodule of M

M
(denoted by A<<, M) if whenever M = A + X, 7 is
cosingular , then M = X, see [3]

Following [4], Zhou defined an F- essential submodules
provided it has a nonzero intersection with any nonzero
submodule in F where F is a collection of R- modules such
that if MeF , then M' € F for any module M' isomorphic to
M. In this paper we introduce p*- essential submodules as a
dual of p-small submodules provided it has a nonzero
intersection with any nonzero singular submodule of M.

An R- module M is called p*- extending module if every
submodule of M is pu*- essential in a direct summand.

In section two , we define and study p*-essential
submodules , p*- closed submodules and p*- uniform
modules.

In section three , we introduce p*- extending modules with
some examples and basic properties , we give sufficient
conditions for a submodules of p*- extending modules to be
p*- extending module.

In section four , we give various characterizations of p*-
extending modules and study the direct sum of p*- extending
modules.

2. p*-essential and p*- closed submodules.

In this section, we introduce p*- essential submodules and
p*- uniform modules as a generalization of essential
submodules and uniform modules respectively which are
duals of p- small submodules and p- hollow modules. Also ,
we define a p*- closed submodules which is stronger than
closed submodules. We study the basic properties of them
that are relevant to our work.

Definition (2.1): Let A be a submodule of an R- module M,
M is said to be p*-essential extension to A or A is a p*-
essential in M if for any nonzero singular submodule B of M

, we have A B # 0. It will be denoted by A<~ M.

Remarks and Examples (2.2).

(1) It is clear that p*- essential submodules are
generalizations of essential submodules. There is a pu*-
essential submodule of an R- module M which is not
essential in M. For example: Consider Zg as Zg- module

. Since Zg is nonsingular Zg- module , then {(_) ,é} and

{0,2,43} are p*- essential in Zg which are not
essential in Zg.

Every nonzero submodule of Q as Z- module is p*-
essential in Q.

Every nonzero cyclic submodule of Z as Z- module is
p*- essential in Z.

Consider Zg as Z- module , {(_),é} and {(_) 2 ,Z} are
not p*- essential in Z.

)
®3)

(4)
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In the following propositions we consider conditions
under which p*-essential submodules versus essential
submodules.

Proposition(2.3): Let M be a singular R- module and let A be
a submodule of M, then A<~ M if and only if A<, M.

Proof: It is clear.

Let R be a commutative integral domain and M be an R-
module. Recall that T(M) = {meM: rm = 0, for some
nonzero r € R} is called the torsion submodule of M. If T(M)
= M (if T(M) = 0), then M is called torsion (torsion free)
module, see [5].

Proposition (2.4): Let M be a torsion module over a
commutative integral domain R and A be a submodule of M.
Then A<= M if and only if A<, M.

Proof: Itis clear by [5, P. 31] and Prop. (2.3).

Let M be an R-module . Recall that M is called a prime
R- module if ann(x) = ann(y), for every nonzero elements x
andyin M, see [6].

Proposition (2.5): Let M be a prime R- module with Z(M) #
0 and A be a submodule of M. Then A< M if and only if
A<, M.

Proof: Assume that A<« M. To show that M is singular .
Let 0 # xe Z(M), then ann(x) <. R and let 0 # y< M. Since
M is prime module , then ann(x) = ann(y) and hence ye
Z(M). Thus Z(M) = M and hence A<, M, by Prop. (2.3). The
proof of the converse is clear. O

Next, we give characterizations of p*- essential
submodules.

Proposition (2.6): Let M be an R- module and let A be a
submodule of M , then A<=, M if and only if for any nonzero

cyclic singular submodule Kof M, ANMK # 0.

Proof: Let K be a nonzero cyclic singular submodule of M
and let 0 # x e K. By our assumption 0 # <x> M A< ANK.
Hence AM K # 0. The proof of the converse is clear. [

Proposition (2.7): Let M be an R- module and let A be a
submodule of M, then A<~ M if and only if for any nonzero
element x in M with Rx singular has a nonzero multiple in A.

Proof: Let 0 # x € M with Rx singular submodule of M. By
Prop. (2.6) RxM A # 0. Hence there is r €R such that 0 #
rx € A. The proof of the converse is clear. O

Proposition (2.8): Let M be any R- module. Then the
following are hold.

(1) Let submodules A< B< M. Then A<~ M if and only if
A<= B and B M.

(2) Let Ai<ywe Bi< M and AySywe B, < M, then Ay Ay <
B1 M B,.

(3) If f: M;—> M, is an R- homomorphism and A< M, ,
then f ™ (A) e M.

(4) Let Ay eA be an

submodules of M and A< B, YV €A, then @

QEN

independent family of

ASe © B,
OEN

Proof. (1) Suppose that A<~ M and let L be a nonzero

singular submodule of B. Since A<~ M, then ANLZ# 0.
Hence A<~ B. Now let K be a nonzero singular submodule

of M, then0# AN K< BM K. Thus B« M.

Conversely , assume that A<y« B< .« M and let L be a
nonzero singular submodule of M, then B L is a nonzero
singular submodule of B. But A<, B , therefore AMB ML

= A~ L# 0. Thus we get the result.

(2) Assume that A<« B;<M and Ax<< B, <M and let L be
a nonzero singular submodule of By ~ B, < B;. Since Aj< <

By , then A, L7 0 and hence it is a nonzero singular

submodule of B,. But A;<;« B, , therefore Ay A, L # 0.
Thus A M A; < B1M B,

(3) Let f : M;— M, be an R- homomorphism and let A< v

M,. To show that f™ (A) <y« M; , let 07 x € M, with Rx is
singular submodule of M, then f (Rx) is a singular
submodule of M,. Consider the following two cases.

(a) ifxe f™* (A), we are done.

(b) if x¢ £ (A),0F f(x) € M, . Since A<y M, , then
there is rE R such that 07 rf (x)e A, hence 0% rxe f*
(A). Thus f™ (A) <ypee My

(4) We use the induction on the number of elements of A.
Suppose that the family has only two elements. i.e. , {A; ,
A} is independent family in M, A< By and A<= Bo. Let
m : Bi@®B,—B; and m, : B, ® B,—> B, be the projection
maps. Since Alfu*e Bl and A2§u*e Bz , then TCl_l(Al) = Al @ Bz
<yre B1@ By and m,'(A) = By @ Ay < B @ By, by(3) and
hence A]_ @ Az = (Al (—B Bz) M ( B]_ @ A2) Sp*e B]_ @ BZ ’ by
).

Now, assume that the result is true for the case when the
index set with n-1 elements. Now let {A(A,,.....,A.} be an

independent family and assume that A<~ B; , Yi=1,
2,....,n. By the previous case we have ”@’1Ai§we”éBi and

i=1 i=1
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A<y~ B, , hence we get éAisu*eé B;. Finally, let {A}
i=1

i=1
O € A be an independent family of submodules of M and
A By, Yo €A. Let N be a nonzero singular submodule

of @B, and let x be a nonzero element in N. So x =

QEN

bi+by+...4+b, , where bieB,, Y i=12,...,n. Hence N

(At Apt....+ Ay Z 0 which implies that N @ A, 7 0.

OEN
Thus @ A< @ B, O
OEN OEN

Notes. (1) Note that {B,} « € in proposition (2.8-4) need not
be an independent family. Example: Let M be the Z- module
7@z, and let A= 07, ,B=72D7, , A, =B, =2D 0.
One can easily show that A;<,«B; and A;<,~B; and A; M A;
= {0} but B,mB, = Z@® 0. Hence {B;B,} is not
independent family.

(2) Let Ay, Ay, By and B, be submodules of an R- module M.
If Ai<;=B:1 and A;<B, , then it is not necessary that
(A1+A;) <y (B1+B,) as the following example shows:

Consider the Z- module Z@ Z,. Let A, = A, = Z( 2 ,(_)) and
B, = 2(1,0) , B, = Z(1,1). One can easily show that
A1<%B1 and A<«B,. But (A;+B;) is not p*-essential in
(B1+By) , where there exists a nonzero singular submodule K

={0} @7, of (B,+By) such that (As+A,) N K={(0,0)}.

Recall that a submodule A of an R- module M is called
a closed submodule of M if A has no proper essential
extension. See [1].

Now, we define the pu*- closed submodules and introduce
the basic properties of these submodules.

Definition (2.9): Let A be a submodule of an R- module M,
we say that A is p*-closed in M (briefly A<« M) if A has no
proper *- essential extension in M.

The following proposition ensure the existences of p*-
closed submodules.

Proposition (2.10): Let M be an R- module . Then every
submodule is pu*- essential in pu*- closed submodule of M.

Proof: Let A be a submodule of M. Consider the collection I'
={K: K< M: A< K}. Tt is clear that T" is nonemplty set . Let

{C.} & € A be achaininI. To show that A<« Uc,leto

QaeN

# xe |J C, with Rx is singular submodule of |J C,, then

aEN QaeNn

there is a0 € A such that 0 # xe C,0 .But A< C,, VX €

A , therefore there exists reR such that 0 Z rxe A , hence
A< % U C, which means that |J C, eT. By Zorn's lemma I'

aen aeEN
has a maximal element say H. To show that H is p*- closed
in M, let B be a submodule of M such that H< B , then
A<= H<~ B and hence A<~ B , by Prop. (2.8) . But H is
maximal element in I'. Thus H = B. O

Remarks and Examples (2.11).

(1) Every p*- closed submodule of an R- module M is
closed in M. The converse is not true in general. For

example , Consider Zg as Zg- module {(_) ,é} and {(_),
2 ,4_1} are closed in Zg but not pu*- closed in Z.

(2) Consider Zs as Z- module , {(_) ,é} and {(_) ,5 ,Z} are
p*-closed submodules of Zs.

(3) InZ,asZ-module, {0,2} is not u*- closed in Z,.

(4) Let M be asingular R- module. Then A is closed in M if
and only if A is p*- closed in M.

(5) Let M be a torsion module over a commutative integral
domain R and A be a submodule of M. Then A<« M if
and only if A<, M.

(6) Let M be a prime R- module with Z(M) # 0 and A be a
submodule of M. Then A<« M if and only if A<, M.

(7) It is well known that every direct summand of an R-
module M is closed in M. But in case p*-closed there is
no relationship with direct summands. For example , Zg
as Zg- module , the nontrivial direct summands of Zg are

{0,3}and {0 2,4 } which are not p*- closed in Zs.
(8) If a submodule A of an R- module M is pu*- closed and
p*- essential in M , then A = M.
(9) The intersection of u*- closed submodules of M need
not be pu*- closed in M. For example , consider M = Z

®Z,as Z- module , let A= 2@ 0 , B =2(L,1). Since
0@® 7, is the only singular submodule of M and has
zero intersection with A , then A <, M. Similarly B

<M, but ANB =2Z@ 0 which is not p*- closed
in M.

Next, we give the basic properties of p*-closed
submodules.

Proposition (2.12): Let M be an R- module. If A<« M, then
B

=<

A

wre , whenever B<,~. M with A <B.

Proof. Suppose that A < B <;» M and let %be a singular

submodule of M such that L M E =A,thenLMNB =
A A A
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A. Since B<;~ M, then A <. L , by Prop. (2.8-2). But A is

p*- closed in M , therefore A = L. Thus %Sm M

Proposition (2.13): Let f : M—> M' be an epimorphism and
let A be a submodule of M such that Kerf < A. If A is p*-
closed in M, then f (A) is p*- closed in M'.

Proof. Let K' be a submodule of M’ such that f (A) <~ K',
then f (f (A)) <y f ™ (K') , by Prop. (2.8). One can easily
show that f ™(f (A)) =A, hence A <. f ' (K'). But A is p*-
closed in M , therefore A = f * (K') , and hence f (A) = K",
Thus f (A) is p*- closed in M. O

One can easily prove the following corollaries.

Corollary (2.14): p*- closed submodule is closed under
isomorphism.

Corollary (2.15): Let A and B be submodules of an R-

module M with A<B. If B is p*- closed in M, then % IS p*-

closed in M .
A

Proposition (2.16): Let M be an R- module and let A , B be
submodules of M with A< B < M. If A is u*- closed in M ,
then A is pu*- closed in B.

Proof: Suppose that A<« L < B < M. But A is p*- closed in
M, therefore A = L. Thus A is p*- closed in B. O

It is easy to prove the following corollary.

Corollary (2.17): Let A and B be submodules of an R-
module M if AMB is p*- closed in M , then AN B is pu*-
closed in A and B.

We cannot prove the transitive property for p*- closed
submodules. However under certain condition we can prove
this property as we see in the following result.

Recall that an R- module M is called chained module if
for each submodules A and B of M either A<BorB<A, see

[7]1.

Proposition (2.18): Let M be chained R- module and let A
and B be submodules of M such that A<B <M. If A<« B <
we M, then A< .. M.

Proof. Let K be a submodule of M such that A<« K< M. By
our assumption we have two cases: If K < B. Since A is p*-
closed in B, then A = K, hence A< j»c M. If B < K, since
A<~ K, 50 B < K, by Prop. (2.8). But B < ;<. M, therefore
B = K, hence A<, B. But A <« B , therefore A = B = K,
Thus A is p*- closed in M. (|

The following proposition shows that the direct sum of
p*-closed submodules is again p*- closed .

Proposition (2.19): Let My, M, be two R- modules. If A<«
M; and A<= M3, then A; @ Ay<«c M; @ M.

Proof: Assume that Ay @ A< B;® B, , B; < M; and B, <
M, , let iy: M;— M;® M, and i: M;— M; @© M, be the
inclusion maps. Since A; @ A<, B; D B, , then i, (A, @
Ag)<ye i (B1 @D B,). Note that iy (A, D Ay) = {xeMy: i(x)
e(ADA)} = {xeMi: x0) e (A DAY} = ArSpee i7(Bs
@ B,) = B;. Similarly , A<, By. But Aj<yc My and Ap<,;
M, , therefore A; = By and A, = B,. Thus A; @ Ay M; @D
M. O

An R- module M is called uniform module if every
nonzero submodule of M is essential in M , see [1].

Now , we introduce p*- uniform modules as a
generalization of uniform modules which is a dual of p-
hollow modules.

Definition (2.20): An R- module M is called p*- uniform if
every nonzero submodule of M is pu*- essential in M.

Remarks and Examples (2.21):

(1) Every nonsingular module is p*- uniform. The
converse is not true in general , for example , Z, as Z-
module.

(2) Every torsion free module over a commutative integral
domain is pu*- uniform.

(3) Clearly that every uniform module is p*- uniform ,
hence Q as Z- module and Z- as Z- module are p*-
uniform modules.

(4) The converse of (3) is not true in general. For example ,
Zg as Zg- module.

(5) Zgas Z- module is not u*- module.

(6) Let M be a singular R- module. Then M is uniform if
and only if M is p*- uniform.

(7) Let M be a torsion module over a commutative integral
domain R. Then M is uniform if and only if M is p*-
uniform.

(8) Let M be a prime R- module with Z(M) # 0. Then M is
uniform if and only if M is pu*- uniform.

The following theorem gives a characterization of p*-
uniform modules. Compare with [3, theorem (3.7)].

Proposition (2.22): Let M be an R- module. Then M is p*-
uniform if and only if every nonzero singular submodule of
M is essential in M.
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Proof: (=) Assume that M is pu*- uniform and let A be a
nonzero singular submodule of M. Assume that there exists a
nonzero submodule B of M such that A B = 0. Since M is
p*- uniform , then B <, M and we have A is nonzero
singular submodule of M , then AmB # 0, which is a
contradiction.

(<) To show that M is p*- uniform , let A be a nonzero
submodule of M and assume that A is not pu*- essential in M,
that is there exists a nonzero singular submodule B of M such
that A B = 0. By our assumption B<, M, then A = 0, which
is a contradiction. O

Compare the following Prop. with [3, Prop. (3.8)]

Proposition (2.23): A nonzero monomorphic image of p*-
uniform is pu*- uniform.

Proof: Let f :M — M' be an R- monomorphism and assume
that M is p*- uniform , we have to show that M' is p*-

uniform, let A be a nonzero submodule of M, then f (A) # 0
, if f (A) = 0, then A< Kerf = 0 which is a contradiction.
Since M' is p*- uniform, then f (A) <~ M'and hence A<
M. O

Corollary (2.24): A submodule of p*- uniform is again p*-
uniform.

Note. A quotient of p*- uniform need not be p*- uniform.

For example , Z as Z- module is p*- uniform but BAZ = Zg
which is not pu*- uniform.

The following proposition gives a condition under which
a quotient of p*- uniform is p*- uniform.

Proposition (2.25): Let M be a pu*- uniform and let A be a
p*- closed submodule of M , the

M . .
n — is u*- uniform.
A

Proof: Let %be a nonzero submodule of % , hence L is

nonzero submodule of M. But M is pu*- uniform , therefore L

M
, by
A

<ue M. Since A is u*- closed in M , then ste
A

Prop. (2.12). Thus % is u*- uniform. [

A direct sum of p*- uniform modules need not be p*-

uniform. For example , let M = Z; @ 7, as Z- module, clearly
that Zg and Z, are u*- uniform Z- modules but M is not p*-

uniform , where there exists a singular submodule A = <(0,

i)> which is not essential in M since there is B = <(§ ,(_))>
such that AmB =0.

Now , we give certain conditions under which a direct sum
of u*- uniform modules is pu*- uniform.

Let M be an R- module. Recall that a submodule A of M is
called a fully invariant if g(A) < A, for every g € End(M)
and M is called duo module if every submodule of M is fully
invariant. See [8].

Proposition (2.26): Let M = M; @ M, be a duo module. If
M, and M, are p*- uniform modules , then M is pu*- uniform.
Provided that AmMM; Z0, V i=12.

Proof: Let A be a nonzero submodule of M. Since M is duo
module , then A is fully invariant and hence A = (A M,) ®
( AN M,). Since each of (AmM;) and (ANM,) is a
nonzero submodule of M; and M, respectively , it follows
that (A N Mp< = My and (A M Mp)< e Ma. Then A< jxe M,
by Prop. (2.8). O

Recall that an R- module M is called distributive if for all
A,Band C<M, AN (B+C) = (AN B)+(AMC). See [9].

In similar argument one can easily prove the following
proposition.

Proposition (2.27): Let M = M;@®© M, be a distributive
module. If My and M, are pu*- uniform modules , then M is
p*- uniform. Provided that ANM; 0, V i=1.2.

3. u*-Extending modules.

In this section , we introduce the concept of pu*- extending
modules as a generalization of extending modules. We
generalize some properties of extending modules to p*-
extending modules and discuss when the submodule of p*-
extending module is p*- extending module.

Definition (3.1): An R- module M is called p*- extending

module if every submodule of M is p*- essential in a direct

summand. Clearly that every p*- uniform module is p*-

extending. The converse is not true in general. For example ,

Zg as Z- module.

Remarks and Examples (3.2).

(1) Every extending module is p*- extending , hence Z as
Z- module is p*- extending. The converse is not true in
general . For example , let R = Z[x] be a polynomial

ring of integers Z and let M = Z[x] @ Z[x]. Since M is
nonsingular , then it is p*- uniform and hence it is p*-
extending , but M is not extending , by [2, P.109].
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(2) Let M be a singular R- module. Then M is p*-
extending if and only if M is extending.

Let M be a torsion module over a commutative integral
domain. Then M is p*- extending if and only if M is

extending.

Let M be a prime R- module with Z(M) # 0. Then M is
p*- extending if and only if M is extending.

(3)

(4)
(5) For any prime number p , the Z- module M = Z, @ Z,
is yu*- extending.

(6) For any prime number p , the Z- module M = Z, @ Z5
is not y*- extending.

The following proposition gives a condition under which
the p*- extending module and p*- uniform module are
equivalent.

Proposition (3.3): Let M be an indecomposable module.
Then the following statements are equivalent.

(1) Mis pu*- uniform.

(2) Miis p*- extending.

(3) Every cyclic submodule of M is p*- essential in a direct
summand of M.

Proof: (1) = (2) = (3) It s clear.

(3)= (1) Assume that every cyclic submodule of M is pu*-
essential in a direct summand of M and let A be a nonzero
submodule of M, let x€ A, hence Rx is p*- essential in a
direct summand D of M. But M is indecomposable, therefore
D = M. Since Rx < A< M, then A <»e M. Thus M is p*-
uniform. O

Now , we give various conditions under which a
submodule of a p*- extending module is p*- extending.

Proposition (3.4): Let M be a p*- extending R- module and
let A be a submodule of M such that the intersection of A
with any direct summand of M is a direct summand of A,
then A is a u*- extending module.

Proof: Let X <A <M. Since M is pu*- extending , then there
exists a direct summand D of M such that X< D. By our
assumption AN D is a direct summand of A. Hence X = (X
M A<= (AM D), by Prop. (2.8). Thus A is u*- extending.

O

Let M be an R- module. Recall that a submodule A of M is
called a fully invariant if g(A) < A, for every g € End(M)
and M is called duo module if every submodule of M is fully
invariant. See [8].

Proposition (3.5): Every fully invariant submodule of p*-
extending module is p*- extending.

Proof. Let M be a p*- extending module and let A be a fully
invariant submodule of M. Let X be a submodule of A. Since
M is p*- extending , then there exists a direct summand D of

M such that X <= D. Let M = D@ D', where D' < M. Now
consider the projection map p: M ——D ,then (1-p): M
——D'". Claim that A=(ANp (M) D ((I-p)(M ) NA).
To show that , let x€ A, then x=a+b ,a€Dand beD'.
Now P(x) =p(a+b) =a and (1-p)(x) = b. But A is fully
invariant , therefore p(x) = a€ p(M)MA and (1-p)(x) = b
€ (1-p)(M)NA. Thus A=(AN p(M)) D ((I-p)(M) N A) =
(ANMD)D (AN D). Since X<xD, then X=(X M A) e (A

M D).Thus A is p*-extending , by Prop.(2.8).
O

Corollary (3.6): Let M be a duo p*- extending module , then
every submodule of M is p*- extending.

The next proposition gives another condition under which
the submodule of pu*- extending module is a p*- extending.

Recall that an R- module M is called distributive if for all
A,BandC<M, AN (B+C) = (AMB)+(AMC). See [9].

Proposition (3.7): Let M be a distributive pu*- extending R-
module, then every submodule of M is p*- extending.

Proof: Let A be a submodule of M and let X be a
submodule of A. Since M is u*- extending , then there
exists a direct summand D of M such that X<~ D, let M=D

@ D', where D'<M. But M is distributive, therefore A=(A

N D)@ (ANDY),then (AND) is a direct summand of
A and X<~ (AMD). Thus A is p*-extending.
O

Let M be an R- module. Recall that a proper submodule A
of M is called a maximal submodule if whenever ACB<M,
then B = M. Equivalently , A is maximal submodule if M =

Rx+A, V xg A, see [10].

Proposition (3.8): Let M be a p*- extending module which
contains maximal submodules. Then for any maximal

submodule A of M, either A <j« Mor M =A@ B, for some
simple submodule B of M.

Proof: Let A be a maximal submodule of M and suppose that
A is not p*- essential submodule of M , then there is a
nonzero singular submodule B of M such that AMB =0, let
X€ B and x & A. Since A is maximal submodule of M, then

. M
M =A +Rx<A+B , hence M = A@ B. Since B= N ,s0B

is simple. O
A module M is called local module if it has a largest
submodule , i.e, a proper submodule which contains all other
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proper submodules. For a local module M, Rad(M) , the
Jacobson radical of M is small in M , see [11].

Corollary (3.9): Let M be a local p*- extending module
then Rad(M)< - M.

Proof: Since M is local module , then Rad(M)<<M , hence
Rad(M) can not be a direct summand of M. Thus Rad(M)<,x
M, by Prop. (3.8). (I

4. Characterizations of p*-extending modules.

In this section , we give various characterizations of p*-
extending modules. Also, we give some conditions under
which the direct sum of p*- extending modules is p*-
extending module.

Theorem (4.1): Let M be an R- module. Then M is pu*-
extending module if and only if every pu*- closed submodule
of M is a direct summand.

Proof: (=) Suppose that M is p*- extending and let A be a
p*- closed in M, then there is a direct summand D of M such
that A<« D. But A is u*- closed in M , therefore A = D.

(<) To show that M is p*- extending , let A be a
submodule of M , then there is a u*- closed submodule B of
M such that A<, B, by Prop. (2.10). By our assumption , B
is a direct summand of M. Thus M is p*- extending module.

O

Theorem (4.2): Let M be an R- module. Then the following
statements are equivalent.

(1) Mis p*- extending module.
(2) For every submodule A of M, there is a decomposition
M=D@D', such that A < D and D'+A <« M.
(3) For every submodule A of M , there is a decomposition
M D

—==® ﬁsuch that D is a direct summand of M
A A A

and K< M.

Proof: (1)=>(2) Let M be a p*- extending and let A be a
submodule of M, there is a direct summand D of M such that

A < D, then M = D@D', D' < M. Since {A, D'} is an
independent family , then A+D' <« M , by Prop. (2.8).

(2)=(3) Let A be a submodule of M. By (2) , there is a
decomposition M = D@ D', such that A < D and D'+A <

M. Claim that M_D () D+A .Since M = D@D,
A A
M _D+D'_ D D+A D D%+A_
then —= = =, and — M =
A A A A A A

Dn(D+A) _A+(DnD")_
A A
D'+A

A , hence M. @
A

>|0O

. Take K= D'+A , so we get the result.

(3)=(1) To show that M is p*- extending , let A be a

submodule of M. By (3) , there is a decomposition % =

% S %such that D is a direct summand of M and K<

M. It is enough to show that A <, D. Leti:D—> M be the
injection map. Since K<«e M , then i 1K) Sure I 1 (M), that
is DM K<, % D. One can easily showthat DK =A,so M
is u*- extending module. O

Proposition (4.3): Let M be an R- module. Then M is p*-
extending module if and only if for each p*- closed
submodule A of M, there is a complement B of A in M such

that every homomorphism f : A@ B—> M can be lifted to a
homomorphism g : M—> M.

Proof: This is a direct consequence of [12 , Lemma 2]. [1

Proposition (4.4): Let M be an R- module. Then M is p*-
extending module if and only if for every submodule A of M
, there exists an idempotent f € End (M) such that A <~ f
(M).

Proof: Clear.

The following proposition gives another characterization
of pu*- extending module.

Proposition (4.5): Let M be an R- module , then M is p*-
extending module if and only if for each direct summand A
of the injective hull E(M) of M , there exists a direct
summand D of M such that (A ™ M)< D.

Proof: Let A be a submodule of M and let B be a
complement of A , then A@B <. M ,by [1, Prop. (1.3)].
Since M<, E(M) , then A@ B <, E(M). Thus E(A) @ E(B) =
E(A B) = E(M). By our assumption , there exists a direct
summand D of M such that E(A) MM <« D. But A <. E(A) ,
therefore A M<»e E(A) M M <;»c D, hence A <. D. Thus

M is p*- extending. The proof of the converse is clear.
O

The following proposition shows that the direct summand
of pu*- extending module is p*- extending.

Proposition (4.6): A direct summand of p*- extending
module is p*- extending.

[101]



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS-2019

Proof: Let M = A@ B be a p*- extending module. To show
that A is a u*- extending , let X be a pu*- closed submodule of

A, then X@® B is a p*- closed submodule of M , by Prop.
(2.19). Hence X @ B is a direct summand of M , then M = X

@BDY,Y<M, thatis X is a direct summand of M. But X
< A, therefore X is a direct summand of A. Thus A is p*-
extending module. O

The following proposition gives a condition under which
a quotient of pu*- extending module is a p*- extending.

Proposition (4.7): Let M be a p*- extending module and let

A be a p*- closed submodule of M , then %is J*-

extending module.
Proof: Let M be a u*- extending module and let A be a p*-
closed submodule of M , then A is a direct summand of M ,

let M=A@ A", for some submodule A' of M , hence % =

A" is a p*- extending module , by Prop. (3.6).
O
Corollary (4.8): Assume that f : M—>M' is an R-

homomorphism and let Kerf be a pu*- closed submodule of M
, then f (M) is p*- extending.
Proof: Let f: M—> M' be an R- homomorphism and let Kerf

be a p*- closed submodule of M, then

M .
: =f (M) is u*-

extending module. O
The direct sum of pu*- extending modules need not be p*-

extending , for example , let M = Z;@ Z, as Z- module,
clearly that Zg and Z, are u*- extending Z- module but M is
not u*- extending.

Now , we give sufficient conditions under which the
direct sum of pu*-extending modules is a p*-extending.

Proposition (4.9): Let M=M;@® M, be a distributive
module if M; and M, are p*-extending , then M is p*-
extending.

Proof: Let M = M; @ M, be a distributive module , M; and
M, are pu*-extending and let A < M. Since M is distributive,
then A = ANM= ANM;DM,) = (ANM)D (AN
M,). Since M; , M, are p*-extending , then there exists a
direct summand D; of M; and direct summand D, of M, such
that (AMM;) <% Dy and (AN My) <y D,. Hence A = (A
M My) @D (AN My)) <= (D1 D D) and D; @ D, is a direct
summand of M , by Prop. (2.8). Thus M is p*-extending.

O

Proposition (4.10): Let M =i@| M; be an R-module ,where
€

M; is a submodule of M,V i€ I. If M; is p*-extending , for
each i€l and every p*- closed submodule of M is fully
invariant , then M is p*-extending.

Proof: Let A be a u*- closed submodule of M and 77 ; :M
—> M; be the natural projection on M; , for each i€ 1. Let

X eA,thenx:Z Xi, i€l,X€M , 7T (X) = x;. By our
assumption, A is fully invariant and hence 77 ; (A)< AN M; .

So, 7T (X)= € AM M; and hence x € I@I (AMM;). Thus
€

Asi@l (AN M). Buti@I (AMM;) < A, therefore Az@I
€ €

ie
(A('\ M,) ) Y iel Since AN M; <M; and M; is IJ*'
extending , then there exists direct summands D; of M; such

that (A M M;) <, D; . By Prop. (2.8) A:(ie®| (AN M)) <

wre (i®|Di) , for each i€l. Thus M is p*-extending.
€

O

Proposition (4.11) Let M; and M, be p*-extending modules

such that annM;+ annM,= R, then M; @ M, is p*-
extending.
Proof: Let A be a submodule of M;@ M,. Since

annM;+annM,=R, then by the same way of the proof of [13
,Prop.4.2,CH.1] A=B @ C, where B is a submodule of M,
and C is a submodule of M,. Since M; and M, are p*-
extending , then there exists direct summands D, of M; and
D, of M, such that B<  D; and C< = D, , hence A =(B @
C) < (D1 @ D) , by Prop. (2.8). Thus M is p*-extending.

O

Proposition (4.12): Let M = M; © M, be an R- module with
M; being p*- extending and M, is semisimple. Suppose that
for any submodule A of M with A My is a direct summand
of A. Then M is pu*- extending.

Proof: Let A be a submodule of M. Then it is easy to see that
A+M; = M; @ [(A+M;) M M,]. Since M, is semisimple , then
(A+My) M M, is a direct summand of M, and therefore A+M,
is a direct summand of M. By our assumption A = (AM M)

@A, for some submodule A' of M. Since M; is p*-
extending , then there is a direct summand D of M; such that

ANM; < D. Hence A = (AN M;) DA<, DD A". Since

DOA<®A+M<@®M , then DA is a direct
summand of M. Thus M is p*  extending.
O
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Proposition (4.13): Let M = M; ©@ M, with M, being p*-
extending and M, injective. Suppose that for any submodule
A of M, we have AM M, is a direct summand of A, then M
is u*- extending.

Proof: Let A be a submodule of M. By hypothesis , there is a
submodule A' of A such that A = (AN M,) @ A'. Note that A’

M, +A o
M M, = 0 and hence T = M, is an injective module

, so there is a submodule M' of M such that %:

M, +A M
ZT@)T Thus it is easy to see that M = M, ® M'

and that M'= Mﬂ = M;. Since M, is p*- extending , then M'
2

is u*- extending , there is a direct summand K of M’ such

that M = K@ K' and A" <e K. Since ANM, is a

submodule of M, and M, is an injective module , then there is

a direct summand D of M, such that AM M, <= D. Hence A

= [(ANM) DA< DOK , where DDK is a direct

summand of M. Thus M is p*- extending.
O

Proposition (4.14): Let M = M; @ M, such that M, is p*-
extending and M, is injective module. Then M is p*-
extending module if and only if for every submodule A of M
such that AMM,#0 , there is a direct summand D of M
such that A<~ D.

Proof: Suppose that for every submodule A of M such that A
MM, # 0, there is a direct summand D of M such that A<
D. Let A be a submodule of M such that A M, = 0. Since

M, +A
A

=M, is an injective module , there is a

submodule M' of M containing A such that

M (M, + A)

A . It is easy to see that M = M'@D M,.

M
Since M'Z —— =M; is u*- extending , so there is a direct
2
summand K of M', hence K is a direct summand of M , such
that A<= K. Thus M is p*- extending. The proof of the
converse is obvious. O

Proposition (4.15): Let R be a PID , then the following
statements are equivalent:

1- (-P R is p*-extending, for every index set .

2- Every projective R- module is p*-extending.

Proof: (1)= (2) Let M be a projective R- module , then by
[10, Corollary (4.4.4), p.89] ,there exists a free R- module F

and an epimorphism f : F——— M. Since F is free, then F =
(-P R, for some index set I. Now consider the following short

exact sequence:

()—» Korf—a @R\ [—l
Where i is the inclusion map . Since M is projective ,
then the sequence splits .Thus 6? R=Kerf @ M. Since GI_)
R is p*-extending , then M is p*- extending , by Prop. (4.6).
(2)= (1) Clear. O

By the same argument ,we can prove the following:

Proposition(4.16): Let R be a PID , then the following
statements are equivalent:

1- (-P R is p*-extending, for every finite index set I.

2- Every finitely generated projective R- module is p*-
extending.
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