On μ*-extending modules

Enas Mustafa Kamil¹, Wasan Khalid²

¹ University of Baghdad

² University of Baghdad

{ mustafaenas , wasankhalid65 }@gmail.com

Abstract: Let *R* be an associative ring with identity and let *M* be a left *R*- module. As a generalization of essential submodules Zhou defined an F- essential submodules provided it has a nonzero intersection with any nonzero submodule in F where F is a collection of *R*- modules such that if $M \in F$, then $M' \in F$ for any module *M'* isomorphic to *M*. In this article we study μ^* - essential submodules as a dual of μ -small submodules provided it has a nonzero intersection with any nonzero singular submodule of *M*. Also we define and investigate μ^* -extending modules with some examples and basic properties.

Keywords. μ^* -essential, μ^* -closed submodules, μ^* -extending modules.

1. Introduction

Let *R* be an associative ring with unity and let *M* be unitary left *R*- module. A submodule *A* of *M* is said to be essential in *M*, (denoted by $A \leq_e M$), if for any submodule *B* of *M*, $A \cap B = 0$ implies B = 0 [1], and a submodule *A* of *M* is said to be closed in *M* if *A* has no proper essential extension in *M*; that is if $A \leq_e B \leq M$, then A = B [1]. An *R*module *M* is called extending (or CS- module), if every submodule of *M* is essential in a direct summand of *M*. It is well known that an *R*- module *M* is extending if and only if every closed submodule of *M* is a direct summand [2]. A submodule *A* of *M* is called μ - small submodule of *M*

(denoted by $A \ll_{\mu} M$) if whenever M = A + X, $\frac{M}{X}$ is

cosingular, then M = X, see [3]

Following [4], Zhou defined an F- essential submodules provided it has a nonzero intersection with any nonzero submodule in F where F is a collection of *R*- modules such that if $M \in F$, then $M' \in F$ for any module *M*' isomorphic to *M*. In this paper we introduce μ^* - essential submodules as a dual of μ -small submodules provided it has a nonzero intersection with any nonzero singular submodule of *M*.

An *R*- module *M* is called μ^* - extending module if every submodule of *M* is μ^* - essential in a direct summand.

In section two , we define and study $\mu^*\mbox{-essential}$ submodules , $\mu^*\mbox{-}$ closed submodules and $\mu^*\mbox{-}$ uniform modules.

In section three , we introduce μ^{*-} extending modules with some examples and basic properties , we give sufficient conditions for a submodules of μ^{*-} extending modules to be μ^{*-} extending module.

In section four , we give various characterizations of μ^* extending modules and study the direct sum of μ^* - extending modules.

2. µ*-essential and µ*- closed submodules.

In this section, we introduce μ^* - essential submodules and μ^* - uniform modules as a generalization of essential submodules and uniform modules respectively which are duals of μ - small submodules and μ - hollow modules. Also , we define a μ^* - closed submodules which is stronger than closed submodules. We study the basic properties of them that are relevant to our work.

Definition (2.1): Let A be a submodule of an R- module M, M is said to be μ^* -essential extension to A or A is a μ^* essential in M if for any nonzero singular submodule B of M , we have $A \cap B \neq 0$. It will be denoted by $A \leq_{\mu^* e} M$.

Remarks and Examples (2.2).

- (1) It is clear that μ^{*-} essential submodules are generalizations of essential submodules. There is a μ^{*-} essential submodule of an *R* module *M* which is not essential in *M*. For example: Consider Z_6 as Z_6 module . Since Z_6 is nonsingular Z_6 module , then { $\overline{0}, \overline{3}$ } and { $\overline{0}, \overline{2}, \overline{4}$ } are μ^{*-} essential in Z_6 which are not essential in Z_6 .
- (2) Every nonzero submodule of Q as Z- module is μ^* -essential in Q.
- (3) Every nonzero cyclic submodule of Z as Z- module is μ^* essential in Z.
- (4) Consider Z_6 as Z- module, $\{\overline{0}, \overline{3}\}$ and $\{\overline{0}, \overline{2}, \overline{4}\}$ are not μ^* essential in Z_6 .

In the following propositions we consider conditions under which μ^* -essential submodules versus essential submodules.

<u>Proposition(2.3)</u>: Let *M* be a singular *R*- module and let *A* be a submodule of *M*, then $A \leq_{\mu^*e} M$ if and only if $A \leq_e M$.

Proof: It is clear.

Let *R* be a commutative integral domain and *M* be an *R*-module. Recall that $T(M) = \{m \in M: rm = 0, \text{ for some nonzero } r \in R\}$ is called the torsion submodule of *M*. If T(M) = M (if T(M) = 0), then *M* is called **torsion (torsion free) module**, see [5].

Proposition (2.4): Let M be a torsion module over a commutative integral domain R and A be a submodule of M. Then $A \leq_{\mu^* e} M$ if and only if $A \leq_e M$.

Proof: It is clear by [5, P. 31] and Prop. (2.3).

Let *M* be an *R*-module . Recall that *M* is called a **prime** *R*-module if ann(x) = ann(y), for every nonzero elements *x* and *y* in *M*, see [6].

Proposition (2.5): Let *M* be a prime *R*- module with $Z(M) \neq 0$ and *A* be a submodule of *M*. Then $A \leq_{\mu^* e} M$ if and only if $A \leq_{e} M$.

Proof: Assume that $A \leq_{\mu^*e} M$. To show that M is singular. Let $0 \neq x \in Z(M)$, then $ann(x) \leq_e R$ and let $0 \neq y \in M$. Since M is prime module, then ann(x) = ann(y) and hence $y \in Z(M)$. Thus Z(M) = M and hence $A \leq_e M$, by Prop. (2.3). The proof of the converse is clear.

Next, we give characterizations of μ^* - essential submodules.

Proposition (2.6): Let *M* be an *R*- module and let *A* be a submodule of *M*, then $A \leq_{\mu^* e} M$ if and only if for any nonzero cyclic singular submodule *K* of *M*, $A \cap K \neq 0$.

<u>Proof:</u> Let *K* be a nonzero cyclic singular submodule of *M* and let $0 \neq x \in K$. By our assumption $0 \neq \langle x \rangle \cap A \leq A \cap K$. Hence $A \cap K \neq 0$. The proof of the converse is clear.

Proposition (2.7): Let M be an R- module and let A be a submodule of M, then $A \leq_{\mu^* e} M$ if and only if for any nonzero element x in M with Rx singular has a nonzero multiple in A.

Proof: Let $0 \neq x \in M$ with Rx singular submodule of M. By Prop. (2.6) $Rx \cap A \neq 0$. Hence there is $r \in R$ such that $0 \neq rx \in A$. The proof of the converse is clear.

<u>**Proposition**</u> (2.8): Let M be any R- module. Then the following are hold.

- (1) Let submodules $A \le B \le M$. Then $A \le_{\mu^* e} M$ if and only if $A \le_{\mu^* e} B$ and $B \le_{\mu^* e} M$.
- (2) Let $A_1 \leq_{\mu^* e} B_1 \leq M$ and $A_2 \leq_{\mu^* e} B_2 \leq M$, then $A_1 \cap A_2 \leq_{\mu^* e} B_1 \cap B_2$.
- (3) If $f: M_1 \rightarrow M_2$ is an *R*-homomorphism and $A \leq_{\mu^* e} M_2$, then $f^{-l}(A) \leq_{\mu^* e} M_1$.
- (4) Let $\{A_{\alpha}\} \alpha \in \Lambda$ be an independent family of submodules of *M* and $A_{\alpha \leq \mu^* e} B_{\alpha}$, $\forall \alpha \in \Lambda$, then $\bigoplus_{\alpha \in \Lambda}$

$$A_{\alpha} \leq_{\mu^* e} \bigoplus_{\alpha \in \wedge} B_{\alpha}.$$

<u>Proof.</u> (1) Suppose that $A \leq_{\mu^*e} M$ and let L be a nonzero singular submodule of B. Since $A \leq_{\mu^*e} M$, then $A \cap L \neq 0$. Hence $A \leq_{\mu^*e} B$. Now let K be a nonzero singular submodule of M, then $0 \neq A \cap K \leq B \cap K$. Thus $B \leq_{\mu^*e} M$.

Conversely, assume that $A \leq_{\mu^* e} B \leq_{\mu^* e} M$ and let *L* be a nonzero singular submodule of *M*, then $B \cap L$ is a nonzero singular submodule of *B*. But $A \leq_{\mu^* e} B$, therefore $A \cap B \cap L$ = $A \cap L \neq 0$. Thus we get the result.

(2) Assume that $A_1 \leq_{\mu^* e} B_1 \leq M$ and $A_2 \leq_{\mu^* e} B_2 \leq M$ and let *L* be a nonzero singular submodule of $B_1 \cap B_2 \leq B_1$. Since $A_1 \leq_{\mu^* e} B_1$, then $A_1 \cap L \neq 0$ and hence it is a nonzero singular submodule of B_2 . But $A_2 \leq_{\mu^* e} B_2$, therefore $A_1 \cap A_2 \cap L \neq 0$. Thus $A_1 \cap A_2 \leq_{\mu^* e} B_1 \cap B_2$.

(3) Let $f: M_1 \rightarrow M_2$ be an *R*- homomorphism and let $A \leq_{\mu^* e} M_2$. To show that $f^{-1}(A) \leq_{\mu^* e} M_1$, let $0 \neq x \in M_1$ with *Rx* is singular submodule of M_1 , then f(Rx) is a singular submodule of M_2 . Consider the following two cases.

(a) if $x \in f^{-1}(A)$, we are done.

(b) if $x \notin f^{-1}(A)$, $0 \neq f(x) \in M_2$. Since $A \leq_{\mu^* e} M_2$, then there is $r \in R$ such that $0 \neq rf(x) \in A$, hence $0 \neq rx \in f^{-1}(A)$. Thus $f^{-1}(A) \leq_{\mu^* e} M_1$.

(4) We use the induction on the number of elements of Λ . Suppose that the family has only two elements. i.e., $\{A_1, A_2\}$ is independent family in $M, A_1 \leq_{\mu^*e} B_1$ and $A_2 \leq_{\mu^*e} B_2$. Let $\pi_1 : B_1 \bigoplus B_2 \longrightarrow B_1$ and $\pi_2 : B_1 \bigoplus B_2 \longrightarrow B_2$ be the projection maps. Since $A_1 \leq_{\mu^*e} B_1$ and $A_2 \leq_{\mu^*e} B_2$, then $\pi_1^{-1}(A_1) = A_1 \bigoplus B_2$ $\leq_{\mu^*e} B_1 \bigoplus B_2$ and $\pi_2^{-1}(A_2) = B_1 \bigoplus A_2 \leq_{\mu^*e} B_1 \bigoplus B_2$, by(3) and hence $A_1 \bigoplus A_2 = (A_1 \bigoplus B_2) \cap (B_1 \bigoplus A_2) \leq_{\mu^*e} B_1 \bigoplus B_2$, by (2).

Now, assume that the result is true for the case when the index set with *n*-1 elements. Now let $\{A_1, A_2, \ldots, A_n\}$ be an independent family and assume that $A_i \leq_{\mu^* e} B_i$, $\forall i = 1$, 2,...,*n*. By the previous case we have $\bigoplus_{i=1}^{n-1} A_i \leq_{\mu^* e} \bigoplus_{i=1}^{n-1} B_i$ and

 $A_{n} \leq_{\mu^{*}e} B_{n} \text{, hence we get} \bigoplus_{i=1}^{n} A_{i} \leq_{\mu^{*}e} \bigoplus_{i=1}^{n} B_{i}. \text{ Finally, let } \{A_{\alpha}\}$ $\mathcal{A} \in \Lambda \text{ be an independent family of submodules of } M \text{ and}$ $A_{\alpha} \leq_{\mu^{*}e} B_{\alpha}, \forall \alpha \in \Lambda. \text{ Let } N \text{ be a nonzero singular submodule}$ of $\bigoplus_{\alpha \in \Lambda} B_{\alpha}$ and let x be a nonzero element in N. So $x = b_{1}+b_{2}+\ldots+b_{n}$, where $bi \in B_{a_{i}}, \forall i = 1,2,\ldots,n.$ Hence $N \cap (A_{\alpha 1}+A_{\alpha 2}+\ldots+A_{\alpha n}) \neq 0$ which implies that $N \cap \bigoplus_{\alpha \in \Lambda} A_{\alpha} \neq 0.$ Thus $\bigoplus_{\alpha \in \Lambda} A_{\alpha} \leq_{\mu^{*}e} \bigoplus_{\alpha \in \Lambda} B_{\alpha}.$

<u>Notes.</u> (1) Note that $\{B_{\alpha}\}_{\alpha \in \Lambda}$ in proposition (2.8-4) need not be an independent family. Example: Let *M* be the *Z*- module $Z \bigoplus Z_2$ and let $A_1 = 0 \bigoplus Z_2$, $B_1 = Z \bigoplus Z_2$, $A_2 = B_2 = Z \bigoplus \overline{0}$. One can easily show that $A_1 \leq_{\mu^* e} B_1$ and $A_2 \leq_{\mu^* e} B_2$ and $A_1 \cap A_2$ $= \{0\}$ but $B_1 \cap B_2 = Z \bigoplus \overline{0}$. Hence $\{B_1, B_2\}$ is not independent family.

(2) Let A_1, A_2, B_1 and B_2 be submodules of an *R*- module *M*. If $A_1 \leq_{\mu^* e} B_1$ and $A_2 \leq_{\mu^* e} B_2$, then it is not necessary that $(A_1 + A_2) \leq_{\mu^* e} (B_1 + B_2)$ as the following example shows:

Consider the *Z*- module $Z \oplus Z_2$. Let $A_1 = A_2 = Z(\overline{2}, 0)$ and $B_1 = Z(\overline{1}, \overline{0})$, $B_2 = Z(\overline{1}, \overline{1})$. One can easily show that $A_1 \leq_{\mu^* e} B_1$ and $A_2 \leq_{\mu^* e} B_2$. But $(A_1 + B_1)$ is not μ^* -essential in $(B_1 + B_2)$, where there exists a nonzero singular submodule *K* = $\{\overline{0}\} \oplus Z_2$ of $(B_1 + B_2)$ such that $(A_1 + A_2) \cap K = \{(\overline{0}, \overline{0})\}$.

Recall that a submodule A of an R-module M is called a **closed submodule** of M if A has no proper essential extension. See [1].

Now, we define the μ^* - closed submodules and introduce the basic properties of these submodules.

Definition (2.9): Let A be a submodule of an R- module M, we say that A is μ^* -closed in M (briefly $A \leq_{\mu^*c} M$) if A has no proper μ^* - essential extension in M.

The following proposition ensure the existences of μ^* -closed submodules.

<u>Proposition</u> (2.10): Let M be an R- module . Then every submodule is μ^* - essential in μ^* - closed submodule of M.

Proof: Let A be a submodule of M. Consider the collection $\Gamma = \{K: K \le M: A \le_{\mu^* e} K\}$. It is clear that Γ is nonemplty set . Let $\{C_a\} \ \alpha \in \Lambda$ be a chain in Γ . To show that $A \le_{\mu^* e} \bigcup_{\alpha \in \Lambda} C_\alpha$, let $0 \ne x \in \bigcup_{\alpha \in \Lambda} C_\alpha$ with Rx is singular submodule of $\bigcup_{\alpha \in \Lambda} C_\alpha$, then there is $\alpha \circ \in \Lambda$ such that $0 \ne x \in C_\alpha \circ$. But $A \le_{\mu^* e} C_\alpha$, $\forall \alpha \in \Lambda$

Λ, therefore there exists $r \in R$ such that $0 \neq rx \in A$, hence $A \leq_{\mu^* e} \bigcup_{\alpha \in \wedge} C_\alpha$ which means that $\bigcup_{\alpha \in \wedge} C_\alpha \in \Gamma$. By Zorn's lemma Γ has a maximal element say *H*. To show that *H* is μ*- closed in *M*, let *B* be a submodule of *M* such that $H \leq_{\mu^* e} B$, then $A \leq_{\mu^* e} H \leq_{\mu^* e} B$ and hence $A \leq_{\mu^* e} B$, by Prop. (2.8). But *H* is maximal element in Γ. Thus H = B.

Remarks and Examples (2.11).

- Every μ*- closed submodule of an *R* module *M* is closed in *M*. The converse is not true in general. For example, Consider Z₆ as Z₆- module { 0, 3 } and { 0, 2, 4 } are closed in Z₆ but not μ*- closed in Z₆.
- (2) Consider Z_6 as Z- module, $\{\overline{0}, \overline{3}\}$ and $\{\overline{0}, \overline{2}, \overline{4}\}$ are μ^* -closed submodules of Z_6 .
- (3) In Z_4 as Z- module, {0, 2} is not μ^* closed in Z_4 .
- (4) Let *M* be a singular *R* module. Then *A* is closed in *M* if and only if *A* is μ^* closed in *M*.
- (5) Let *M* be a torsion module over a commutative integral domain *R* and *A* be a submodule of *M*. Then $A \leq_{\mu^*c} M$ if and only if $A \leq_c M$.
- (6) Let *M* be a prime *R* module with $Z(M) \neq 0$ and *A* be a submodule of *M*. Then $A \leq_{u^*c} M$ if and only if $A \leq_c M$.
- (7) It is well known that every direct summand of an *R*-module *M* is closed in *M*. But in case μ*-closed there is no relationship with direct summands. For example, *Z*₆ as *Z*₆-module, the nontrivial direct summands of *Z*₆ are {0,3} and {0,2,4} which are not μ*- closed in *Z*₆.
- (8) If a submodule A of an R- module M is μ^* closed and μ^* essential in M, then A = M.
- (9) The intersection of μ*- closed submodules of *M* need not be μ*- closed in *M*. For example, consider *M* = *Z* ⊕ *Z*₂ as *Z* module, let *A* = *Z* ⊕ 0 , *B* = *Z*(1,1). Since 0 ⊕ *Z*₂ is the only singular submodule of *M* and has zero intersection with *A*, then *A* ≤_{μ*c} *M*. Similarly *B* ≤_{μ*c} *M*, but *A* ∩ *B* = 2*Z* ⊕ 0 which is not μ*- closed in *M*.

Next, we give the basic properties of μ^* -closed submodules.

<u>**Proposition**</u> (2.12): Let *M* be an *R*- module. If $A \leq_{\mu^*c} M$, then $\frac{B}{A} \leq_{\mu^*c} \frac{M}{A}$, whenever $B \leq_{\mu^*c} M$ with $A \leq B$.

<u>**Proof.**</u> Suppose that $A \leq B \leq_{\mu^*e} M$ and let $\frac{L}{A}$ be a singular submodule of $\frac{M}{A}$ such that $\frac{L}{A} \cap \frac{B}{A} = A$, then $L \cap B =$

submodule of
$$\frac{A}{A}$$
 such that $\frac{D}{A} \cap \frac{D}{A} = A$, then L

A. Since $B \leq_{\mu^*e} M$, then $A \leq_{\mu^*e} L$, by Prop. (2.8-2). But A is μ^* - closed in M, therefore A = L. Thus $\frac{B}{A} \leq_{\mu^*e} \frac{M}{A}$. \Box

Proposition (2.13): Let $f: M \rightarrow M'$ be an epimorphism and let A be a submodule of M such that $Kerf \leq A$. If A is μ^* -closed in M, then f(A) is μ^* - closed in M'.

<u>Proof.</u> Let *K*' be a submodule of *M*' such that $f(A) \leq_{\mu^*e} K'$, then $f^{-1}(f(A)) \leq_{\mu^*e} f^{-1}(K')$, by Prop. (2.8). One can easily show that $f^{-1}(f(A)) = A$, hence $A \leq_{\mu^*e} f^{-1}(K')$. But *A* is μ^* -closed in *M*, therefore $A = f^{-1}(K')$, and hence f(A) = K'. Thus f(A) is μ^* -closed in *M*'.

One can easily prove the following corollaries.

<u>Corollary (2.14)</u>: μ^* - closed submodule is closed under isomorphism.

Corollary (2.15): Let A and B be submodules of an Rmodule M with $A \le B$. If B is μ^* - closed in M, then $\frac{B}{A}$ is μ^* -

closed in
$$\frac{M}{A}$$
.

Proposition (2.16): Let *M* be an *R*- module and let *A*, *B* be submodules of *M* with $A \le B \le M$. If *A* is μ^* - closed in *M*, then *A* is μ^* - closed in *B*.

<u>Proof:</u> Suppose that $A \leq_{\mu^* e} L \leq B \leq M$. But A is μ^* - closed in M, therefore A = L. Thus A is μ^* - closed in B.

It is easy to prove the following corollary.

Corollary (2.17): Let A and B be submodules of an R-module M if $A \cap B$ is μ^* -closed in M, then $A \cap B$ is μ^* -closed in A and B.

We cannot prove the transitive property for μ^* - closed submodules. However under certain condition we can prove this property as we see in the following result.

Recall that an *R*- module *M* is called **chained module** if for each submodules *A* and *B* of *M* either $A \le B$ or $B \le A$, see [7].

Proposition (2.18): Let *M* be chained *R*- module and let *A* and *B* be submodules of *M* such that $A \le B \le M$. If $A \le_{\mu^*c} B \le_{\mu^*c} M$, then $A \le_{\mu^*c} M$.

<u>Proof.</u> Let *K* be a submodule of *M* such that $A \leq_{\mu^*e} K \leq M$. By our assumption we have two cases: If $K \leq B$. Since *A* is μ^* -closed in *B*, then A = K, hence $A \leq_{\mu^*c} M$. If $B \leq K$, since $A \leq_{\mu^*e} K$, so $B \leq_{\mu^*e} K$, by Prop. (2.8). But $B \leq_{\mu^*c} M$, therefore B = K, hence $A \leq_{\mu^*e} B$. But $A \leq_{\mu^*c} B$, therefore A = B = K. Thus *A* is μ^* - closed in *M*.

The following proposition shows that the direct sum of μ^* -closed submodules is again μ^* - closed .

Proposition (2.19): Let M_1 , M_2 be two *R*- modules. If $A_1 \leq_{\mu^*c} M_1$ and $A_2 \leq_{\mu^*c} M_2$, then $A_1 \bigoplus A_2 \leq_{\mu^*c} M_1 \bigoplus M_2$.

Proof: Assume that $A_1 \bigoplus A_{2 \leq \mu^* e} B_1 \bigoplus B_2$, $B_1 \leq M_1$ and $B_2 \leq M_2$, let $i_l: M_1 \rightarrow M_1 \bigoplus M_2$ and $i_2: M_2 \rightarrow M_1 \bigoplus M_2$ be the inclusion maps. Since $A_1 \bigoplus A_{2 \leq \mu^* e} B_1 \bigoplus B_2$, then $i_l^{-1}(A_1 \bigoplus A_2) \leq_{\mu^* e} i_l^{-1}(B_1 \bigoplus B_2)$. Note that $i_l^{-1}(A_1 \bigoplus A_2) = \{x \in M_1: i_l(x) \in (A_1 \bigoplus A_2)\} = \{x \in M_1: (x, 0) \in (A_1 \bigoplus A_2)\} = A_1 \leq_{\mu^* e} i_l^{-1}(B_1 \bigoplus B_2) = B_1$. Similarly, $A_2 \leq_{\mu^* e} B_2$. But $A_1 \leq_{\mu^* c} M_1$ and $A_2 \leq_{\mu^* c} M_2$, therefore $A_1 = B_1$ and $A_2 = B_2$. Thus $A_1 \bigoplus A_2 \leq_{\mu^* c} M_1 \bigoplus M_2$.

An R- module M is called **uniform** module if every nonzero submodule of M is essential in M, see [1].

Now , we introduce μ^* - uniform modules as a generalization of uniform modules which is a dual of μ -hollow modules.

Definition (2.20): An *R*- module *M* is called μ^* - uniform if every nonzero submodule of *M* is μ^* - essential in *M*.

Remarks and Examples (2.21):

- (1) Every nonsingular module is μ^* uniform. The converse is not true in general, for example, Z_4 as Z-module.
- Every torsion free module over a commutative integral domain is μ*- uniform.
- (3) Clearly that every uniform module is μ*- uniform, hence Q as Z- module and Z- as Z- module are μ*uniform modules.
- (4) The converse of (3) is not true in general. For example, Z_6 as Z_6 module.
- (5) Z_6 as Z- module is not μ^* module.
- (6) Let *M* be a singular *R* module. Then *M* is uniform if and only if *M* is μ^* uniform.
- (7) Let *M* be a torsion module over a commutative integral domain *R*. Then *M* is uniform if and only if *M* is μ^* -uniform.
- (8) Let *M* be a prime *R* module with $Z(M) \neq 0$. Then *M* is uniform if and only if *M* is μ^* uniform.

The following theorem gives a characterization of μ^* -uniform modules. Compare with [3, theorem (3.7)].

Proposition (2.22): Let M be an R- module. Then M is μ^* -uniform if and only if every nonzero singular submodule of M is essential in M.

<u>Proof</u>: (\Longrightarrow) Assume that M is μ^* - uniform and let A be a nonzero singular submodule of M. Assume that there exists a nonzero submodule B of M such that $A \cap B = 0$. Since M is μ^* - uniform, then $B \leq_{\mu^*e} M$ and we have A is nonzero singular submodule of M, then $A \cap B \neq 0$, which is a contradiction.

 (\leftarrow) To show that *M* is μ^* - uniform, let *A* be a nonzero submodule of *M* and assume that *A* is not μ^* - essential in *M*, that is there exists a nonzero singular submodule *B* of *M* such that $A \cap B = 0$. By our assumption $B \leq_e M$, then A = 0, which is a contradiction.

Compare the following Prop. with [3, Prop. (3.8)]

<u>Proposition (2.23)</u>: A nonzero monomorphic image of μ^* -uniform is μ^* - uniform.

<u>Proof</u>: Let $f: M \to M'$ be an *R*- monomorphism and assume that *M* is μ^* - uniform , we have to show that *M'* is μ^* - uniform , let *A* be a nonzero submodule of *M'*, then $f(A) \neq 0$, if f(A) = 0, then $A \leq Kerf = 0$ which is a contradiction. Since *M'* is μ^* - uniform , then $f(A) \leq_{\mu^*e} M'$ and hence $A \leq_{\mu^*e} M$.

Corollary (2.24): A submodule of μ^* - uniform is again μ^* - uniform.

<u>Note.</u> A quotient of μ^* - uniform need not be μ^* - uniform. For example, Z as Z- module is μ^* - uniform but $\frac{Z}{6Z} \cong Z_6$ which is not μ^* - uniform.

The following proposition gives a condition under which a quotient of μ^* - uniform is μ^* - uniform.

<u>Proposition</u> (2.25): Let *M* be a μ^* - uniform and let *A* be a μ^* - closed submodule of *M*, the

n $\frac{M}{A}$ is μ^* - uniform.

<u>**Proof:**</u> Let $\frac{L}{A}$ be a nonzero submodule of $\frac{M}{A}$, hence L is nonzero submodule of M. But M is μ^* - uniform, therefore $L \leq_{\mu^*e} M$. Since A is μ^* - closed in M, then $\frac{L}{A} \leq_{\mu^*e} \frac{M}{A}$, by Prop. (2.12). Thus $\frac{M}{A}$ is μ^* - uniform. \Box

A direct sum of μ^* - uniform modules need not be μ^* uniform. For example, let $M = Z_8 \bigoplus Z_2$ as Z- module, clearly that Z_8 and Z_2 are μ^* - uniform Z- modules but M is not μ^* - uniform, where there exists a singular submodule $A = \langle \overline{0}, \overline{1} \rangle$ $\overline{1} \rangle$ which is not essential in M since there is $B = \langle \overline{2}, \overline{0} \rangle$ such that $A \cap B = 0$.

Now , we give certain conditions under which a direct sum of μ^* - uniform modules is μ^* - uniform.

Let *M* be an *R*- module. Recall that a submodule *A* of *M* is called a **fully invariant** if $g(A) \le A$, for every $g \in End(M)$ and *M* is called **duo module** if every submodule of *M* is fully invariant. See [8].

Proposition (2.26): Let $M = M_1 \bigoplus M_2$ be a duo module. If M_1 and M_2 are μ^* - uniform modules, then M is μ^* - uniform. Provided that $A \cap M_i \neq 0$, $\forall i = 1, 2$.

Proof: Let *A* be a nonzero submodule of *M*. Since *M* is duo module, then *A* is fully invariant and hence $A = (A \cap M_I) \bigoplus$ ($A \cap M_2$). Since each of $(A \cap M_I)$ and $(A \cap M_2)$ is a nonzero submodule of M_1 and M_2 respectively, it follows that $(A \cap M_I) \leq \mu^* M_1$ and $(A \cap M_2) \leq \mu^* M_2$. Then $A \leq \mu^* M$, by Prop. (2.8).

Recall that an *R*- module *M* is called **distributive** if for all *A*, *B* and $C \leq M$, $A \cap (B+C) = (A \cap B) + (A \cap C)$. See [9].

In similar argument one can easily prove the following proposition.

Proposition (2.27): Let $M = M_1 \bigoplus M_2$ be a distributive module. If M_1 and M_2 are μ^* - uniform modules, then M is μ^* - uniform. Provided that $A \cap M_i \neq 0$, $\forall i = 1,2$.

3. μ*-Extending modules.

In this section , we introduce the concept of μ^* - extending modules as a generalization of extending modules. We generalize some properties of extending modules to μ^* - extending modules and discuss when the submodule of μ^* - extending module is μ^* - extending module.

Definition (3.1): An *R*- module *M* is called μ^* - extending module if every submodule of *M* is μ^* - essential in a direct summand. Clearly that every μ^* - uniform module is μ^* - extending. The converse is not true in general. For example, Z_6 as *Z*- module.

Remarks and Examples (3.2).

(1) Every extending module is μ^* - extending , hence *Z* as *Z*- module is μ^* - extending. The converse is not true in general . For example , let R = Z[x] be a polynomial ring of integers *Z* and let $M = Z[x] \bigoplus Z[x]$. Since *M* is nonsingular , then it is μ^* - uniform and hence it is μ^* - extending , but *M* is not extending , by [2, P.109].

- (2) Let M be a singular R- module. Then M is μ^* extending if and only if *M* is extending.
- (3) Let *M* be a torsion module over a commutative integral domain. Then M is μ^* - extending if and only if M is extending.
- (4) Let *M* be a prime *R* module with $Z(M) \neq 0$. Then *M* is μ^* - extending if and only if *M* is extending.
- (5) For any prime number p, the Z- module $M = Z_p \bigoplus Z_{p2}$ is µ*- extending.
- (6) For any prime number p, the Z- module $M = Z_p \bigoplus Z_{p3}$ is not µ*- extending.

The following proposition gives a condition under which the μ^* - extending module and μ^* - uniform module are equivalent.

Proposition (3.3): Let M be an indecomposable module. Then the following statements are equivalent.

- (1) M is μ^* uniform.
- (2) M is μ^* extending.
- (3) Every cyclic submodule of M is μ^* essential in a direct summand of M.

<u>Proof</u>: (1) \Rightarrow (2) \Rightarrow (3) It is clear.

(3) \Rightarrow (1) Assume that every cyclic submodule of M is μ^* essential in a direct summand of M and let A be a nonzero submodule of M, let $x \in A$, hence Rx is μ^* - essential in a direct summand D of M. But M is indecomposable, therefore D = M. Since $Rx \le A \le M$, then $A \le_{\mu^* e} M$. Thus M is μ^* uniform.

Now , we give various conditions under which a submodule of a μ^* - extending module is μ^* - extending.

Proposition (3.4): Let M be a μ^* - extending R- module and let A be a submodule of M such that the intersection of Awith any direct summand of M is a direct summand of A, then *A* is a μ^* - extending module.

<u>Proof:</u> Let $X \le A \le M$. Since M is μ^* - extending , then there exists a direct summand D of M such that $X \leq_{\mu^* e} D$. By our assumption $A \cap D$ is a direct summand of A. Hence X = (X = X) $(A) \leq_{\mu^* e} (A \cap D)$, by Prop. (2.8). Thus A is μ^* - extending.

Let M be an R- module. Recall that a submodule A of M is called a **fully invariant** if $g(A) \leq A$, for every $g \in End(M)$ and *M* is called **duo module** if every submodule of *M* is fully invariant. See [8].

Proposition (3.5): Every fully invariant submodule of μ^* extending module is µ*- extending.

<u>Proof.</u> Let *M* be a μ^* - extending module and let *A* be a fully invariant submodule of M. Let X be a submodule of A. Since *M* is μ^* - extending , then there exists a direct summand *D* of *M* such that $X \leq_{\mu^* e} D$. Let $M = D \bigoplus D'$, where $D' \leq M$. Now consider the projection map $p: M \longrightarrow D$, then (1-p): M $\longrightarrow D'$. Claim that $A = (A \cap P(M)) \bigoplus ((I - P)(M) \cap A)$. To show that, let $x \in A$, then x = a+b, $a \in D$ and $b \in D'$. Now P(x) = P(a+b) = a and (1-P)(x) = b. But A is fully invariant, therefore $p(x) = a \in p(M) \cap A$ and (1-p)(x) = b $\in (1-p)(M) \cap A$. Thus $A = (A \cap p(M)) \bigoplus ((I-p)(M) \cap A) =$ $(A \cap D) \bigoplus (A \cap D')$. Since $X \leq_{\mu^* e} D$, then $X = (X \cap A) \leq_{\mu^* e} (A \cap D)$ $\cap D$). Thus A is μ^* -extending , by Prop.(2.8).

Corollary (3.6): Let *M* be a duo μ^* - extending module, then every submodule of M is μ^* - extending.

The next proposition gives another condition under which the submodule of μ^* - extending module is a μ^* - extending.

Recall that an *R*- module *M* is called **distributive** if for all A, B and $C \leq M$, $A \cap (B+C) = (A \cap B) + (A \cap C)$. See [9].

Proposition (3.7): Let M be a distributive μ^* - extending Rmodule, then every submodule of M is μ^* - extending.

Proof: Let A be a submodule of M and let X be a submodule of A. Since M is μ^* - extending, then there exists a direct summand D of M such that $X \leq_{\mu^* e} D$, let M = D $\oplus D'$, where $D' \leq M$. But M is distributive, therefore A = (A = A) $(\cap D) \bigoplus (A \cap D')$, then $(A \cap D)$ is a direct summand of A and $X \leq_{\mu^* e} (A \cap D)$. Thus A is μ^* -extending.

Let *M* be an *R*- module. Recall that a proper submodule *A* of *M* is called a **maximal submodule** if whenever $A \subset B \leq M$, then B = M. Equivalently, A is maximal submodule if M =Rx+A, $\forall x \notin A$, see [10].

Proposition (3.8): Let M be a μ^* - extending module which contains maximal submodules. Then for any maximal submodule A of M, either $A \leq_{\mu^* e} M$ or $M = A \bigoplus B$, for some simple submodule *B* of *M*.

Proof: Let A be a maximal submodule of M and suppose that A is not μ^* - essential submodule of M, then there is a nonzero singular submodule B of M such that $A \cap B = 0$, let $x \in B$ and $x \notin A$. Since A is maximal submodule of M, then

$$M = A + Rx \le A + B$$
, hence $M = A \oplus B$. Since $B \cong \frac{M}{A}$, so B is simple.

A module *M* is called **local module** if it has a largest submodule, i.e, a proper submodule which contains all other proper submodules. For a local module M, Rad(M), the Jacobson radical of M is small in M, see [11].

<u>Corollary (3.9)</u>: Let M be a local μ^* - extending module , then $Rad(M) \leq_{\mu^*e} M$.

<u>Proof:</u> Since *M* is local module , then Rad(M) << M , hence Rad(M) can not be a direct summand of *M*. Thus $Rad(M) \leq_{\mu^*e} M$, by Prop. (3.8).

4. Characterizations of µ*-extending modules.

In this section , we give various characterizations of μ^* extending modules. Also, we give some conditions under which the direct sum of μ^* - extending modules is μ^* extending module.

Theorem (4.1): Let M be an R- module. Then M is μ^* -extending module if and only if every μ^* - closed submodule of M is a direct summand.

<u>Proof:</u> (\Rightarrow) Suppose that *M* is μ^* - extending and let *A* be a μ^* - closed in *M*, then there is a direct summand *D* of *M* such that $A \leq_{\mu^*e} D$. But *A* is μ^* - closed in *M*, therefore A = D.

(\Leftarrow) To show that *M* is μ^* - extending , let *A* be a submodule of *M* , then there is a μ^* - closed submodule *B* of *M* such that $A \leq_{\mu^*e} B$, by Prop. (2.10). By our assumption , *B* is a direct summand of *M*. Thus *M* is μ^* - extending module.

<u>Theorem (4.2)</u>: Let *M* be an *R*- module. Then the following statements are equivalent.

- (1) M is μ^* extending module.
- (2) For every submodule A of M, there is a decomposition $M = D \bigoplus D'$, such that $A \le D$ and $D' + A \le_{\mu^* e} M$.
- (3) For every submodule A of M, there is a decomposition $\frac{M}{A} = \frac{D}{A} \bigoplus \frac{K}{A}$ such that D is a direct summand of M and $K \leq_{u^*e} M$.

<u>Proof:</u> (1) \Longrightarrow (2) Let *M* be a μ^* - extending and let *A* be a submodule of *M*, there is a direct summand *D* of *M* such that $A \leq_{\mu^*e} D$, then $M = D \bigoplus D'$, $D' \leq M$. Since $\{A, D'\}$ is an independent family, then $A+D' \leq_{\mu^*e} M$, by Prop. (2.8).

(2) \Rightarrow (3) Let *A* be a submodule of *M*. By (2), there is a decomposition $M = D \oplus D'$, such that $A \leq D$ and $D' + A \leq_{\mu^* e}$ *M*. Claim that $\frac{M}{A} = \frac{D}{A} \oplus \frac{D' + A}{A}$. Since $M = D \oplus D'$,

then $\frac{M}{A} = \frac{D+D'}{A} = -\frac{D}{A} + \frac{D'+A}{A}$ and $\frac{D}{A} - \frac{D'+A}{A} =$

$$\frac{D \cap (D'+A)}{A} = \frac{A + (D \cap D')}{A} = A \text{, hence } \frac{M}{A} = \frac{D}{A} \oplus \frac{D'+A}{A}.$$
 Take $K = D'+A$, so we get the result.

(3) \Rightarrow (1) To show that *M* is μ^* - extending , let *A* be a submodule of *M*. By (3) , there is a decomposition $\frac{M}{A}$ =

 $\frac{D}{A} \oplus \frac{K}{A}$ such that D is a direct summand of M and $K \leq_{\mu^*e}$

M. It is enough to show that $A \leq_{\mu^*e} D$. Let $i : D \to M$ be the injection map. Since $K \leq_{\mu^*e} M$, then $i^{-1}(K) \leq_{\mu^*e} i^{-1}(M)$, that is $D \cap K \leq_{\mu^*e} D$. One can easily show that $D \cap K = A$, so *M* is μ^* - extending module.

Proposition (4.3): Let *M* be an *R*- module. Then *M* is μ^* -extending module if and only if for each μ^* - closed submodule *A* of *M*, there is a complement *B* of *A* in *M* such that every homomorphism $f : A \oplus B \rightarrow M$ can be lifted to a homomorphism $g : M \rightarrow M$.

Proof: This is a direct consequence of [12, Lemma 2].

Proposition (4.4): Let *M* be an *R*- module. Then *M* is μ^* -extending module if and only if for every submodule *A* of *M*, there exists an idempotent $f \in \text{End}(M)$ such that $A \leq_{\mu^*e} f(M)$.

Proof: Clear.

The following proposition gives another characterization of μ^* - extending module.

Proposition (4.5): Let *M* be an *R*- module, then *M* is μ^* -extending module if and only if for each direct summand *A* of the injective hull E(M) of *M*, there exists a direct summand *D* of *M* such that $(A \cap M) \leq_{\mu^*e} D$.

<u>Proof:</u> Let A be a submodule of M and let B be a complement of A, then $A \oplus B \leq_e M$, by [1, Prop. (1.3)]. Since $M \leq_e E(M)$, then $A \oplus B \leq_e E(M)$. Thus $E(A) \oplus E(B) = E(A \oplus B) = E(M)$. By our assumption, there exists a direct summand D of M such that $E(A) \cap M \leq_{\mu^*e} D$. But $A \leq_e E(A)$, therefore $A \cap M \leq_{\mu^*e} E(A) \cap M \leq_{\mu^*e} D$, hence $A \leq_{\mu^*e} D$. Thus M is μ^* - extending. The proof of the converse is clear.

The following proposition shows that the direct summand of μ^* - extending module is μ^* - extending.

<u>**Proposition**</u> (4.6): A direct summand of μ^* - extending module is μ^* - extending.

Proof: Let $M = A \bigoplus B$ be a μ^* - extending module. To show that *A* is a μ^* - extending , let *X* be a μ^* - closed submodule of *A* , then $X \bigoplus B$ is a μ^* - closed submodule of *M* , by Prop. (2.19). Hence $X \bigoplus B$ is a direct summand of *M* , then $M = X \bigoplus B \bigoplus Y$, $Y \le M$, that is *X* is a direct summand of *M*. But $X \le A$, therefore *X* is a direct summand of *A*. Thus *A* is μ^* -extending module.

The following proposition gives a condition under which a quotient of μ^* - extending module is a μ^* - extending.

Proposition (4.7): Let M be a μ^* - extending module and let A be a μ^* - closed submodule of M, then $\frac{M}{A}$ is μ^* -

extending module.

<u>Proof</u>: Let M be a μ^* - extending module and let A be a μ^* - closed submodule of M, then A is a direct summand of M,

let $M = A \bigoplus A'$, for some submodule A' of M, hence $\frac{M}{A} \cong$ A' is a μ^* - extending module , by Prop. (3.6).

Corollary (4.8): Assume that $f : M \rightarrow M'$ is an *R*-homomorphism and let *Kerf* be a μ^* - closed submodule of *M*, then f(M) is μ^* - extending.

<u>**Proof:**</u> Let $f: M \to M'$ be an *R*-homomorphism and let *Kerf* be a u* closed submodule of *M* then $M \simeq f(M)$ is u*

be a μ^* - closed submodule of M, then $\frac{M}{Kerf} \cong f(M)$ is μ^* extending module.

The direct sum of μ^* - extending modules need not be μ^* extending, for example, let $M = Z_8 \bigoplus Z_2$ as Z- module, clearly that Z_8 and Z_2 are μ^* - extending Z- module but M is not μ^* - extending.

Now , we give sufficient conditions under which the direct sum of μ^* -extending modules is a μ^* -extending.

Proposition (4.9): Let $M=M_1 \bigoplus M_2$ be a distributive module if M_1 and M_2 are μ^* -extending , then M is μ^* -extending.

Proof: Let $M = M_1 \bigoplus M_2$ be a distributive module , M_1 and M_2 are μ^* -extending and let $A \leq M$. Since M is distributive, then $A = A \cap M = A \cap (M_1 \bigoplus M_2) = (A \cap M_1) \bigoplus (A \cap M_2)$. Since M_1 , M_2 are μ^* -extending , then there exists a direct summand D_1 of M_1 and direct summand D_2 of M_2 such that $(A \cap M_1) \leq_{\mu^*e} D_1$ and $(A \cap M_2) \leq_{\mu^*e} D_2$. Hence $A = (A \cap M_1) \bigoplus (A \cap M_2)) \leq_{\mu^*e} (D_1 \bigoplus D_2)$ and $D_1 \bigoplus D_2$ is a direct summand of M , by Prop. (2.8). Thus M is μ^* -extending.

Proposition (4.10): Let $M = \bigoplus_{i \in I} M_i$ be an *R*-module ,where M_i is a submodule of M, $\forall i \in I$. If M_i is μ^* -extending, for each $i \in I$ and every μ^* - closed submodule of M is fully invariant, then M is μ^* -extending.

<u>Proof:</u> Let *A* be a µ*- closed submodule of *M* and *π_i*:*M* → *M_i* be the natural projection on *M_i*, for each *i* ∈ *I*. Let $x \in A$, then $x = \sum x_i$, $i \in I$, $x_i \in M_i$, $\pi_i(x) = x_i$. By our assumption, *A* is fully invariant and hence $\pi_i(A) \leq A \cap M_i$. So, $\pi_i(x) = x_i \in A \cap M_i$ and hence $x \in \bigoplus_{i \in I} (A \cap M_i)$. Thus $A \leq \bigoplus_{i \in I} (A \cap M_i)$. But $\bigoplus_{i \in I} (A \cap M_i) \leq A$, therefore $A = \bigoplus_{i \in I}$ $(A \cap M_i)$, $\forall i \in I$. Since $A \cap M_i \leq M_i$ and M_i is µ*extending, then there exists direct summands D_i of M_i such that $(A \cap M_i) \leq_{\mu^*e} D_i$. By Prop. (2.8) $A = (\bigoplus_{i \in I} (A \cap M_i)) \leq$ μ^*e $(\bigoplus_{i \in I} D_i)$, for each $i \in I$. Thus *M* is µ*-extending.

Proposition (4.11) Let M_1 and M_2 be μ^* -extending modules such that $annM_1 + annM_2 = R$, then $M_1 \bigoplus M_2$ is μ^* -extending.

<u>Proof:</u> Let A be a submodule of $M_1 \bigoplus M_2$. Since $annM_1+annM_2=R$, then by the same way of the proof of [13, Prop.4.2, CH.1] $A=B \bigoplus C$, where B is a submodule of M_1 and C is a submodule of M_2 . Since M_1 and M_2 are μ^* -extending, then there exists direct summands D_1 of M_1 and D_2 of M_2 such that $B \leq_{\mu^*e} D_1$ and $C \leq_{\mu^*e} D_2$, hence $A = (B \bigoplus C) \leq_{\mu^*e} (D_1 \bigoplus D_2)$, by Prop. (2.8). Thus M is μ^* -extending.

Proposition (4.12): Let $M = M_1 \bigoplus M_2$ be an *R*- module with M_1 being μ^* - extending and M_2 is semisimple. Suppose that for any submodule *A* of *M* with $A \cap M_1$ is a direct summand of *A*. Then *M* is μ^* - extending.

Proof: Let *A* be a submodule of *M*. Then it is easy to see that $A+M_1 = M_1 \bigoplus [(A+M_1) \cap M_2]$. Since M_2 is semisimple, then $(A+M_1) \cap M_2$ is a direct summand of M_2 and therefore $A+M_1$ is a direct summand of *M*. By our assumption $A = (A \cap M_1)$ $\bigoplus A'$, for some submodule *A'* of *M*. Since M_1 is μ^* -extending, then there is a direct summand *D* of M_1 such that $A \cap M_1 \leq_{\mu^*e} D$. Hence $A = (A \cap M_1) \bigoplus A' \leq_{\mu^*e} D \bigoplus A'$. Since $D \bigoplus A' \leq \bigoplus A + M_1 \leq \bigoplus M$, then $D \bigoplus A'$ is a direct summand of *M*. Thus *M* is μ^* - extending.

Proposition (4.13): Let $M = M_1 \bigoplus M_2$ with M_1 being μ^* -extending and M_2 injective. Suppose that for any submodule A of M, we have $A \cap M_2$ is a direct summand of A, then M is μ^* - extending.

Proof: Let A be a submodule of M. By hypothesis , there is a submodule A' of A such that $A = (A \cap M_2) \bigoplus A'$. Note that A'

 $\bigcap M_2 = 0$ and hence $\frac{M_2 + A'}{A'} \cong M_2$ is an injective module

, so there is a submodule M' of M such that $\frac{M}{A'}$ =

 $\frac{M_2 + A'}{A'} \oplus \frac{M'}{A'}$. Thus it is easy to see that $M = M_2 \oplus M'$

and that $M' \cong \frac{M}{M_2} \cong M_1$. Since M_1 is μ^* - extending , then M'

is μ^{*-} extending, there is a direct summand K of M' such that $M = K \bigoplus K'$ and $A' \leq_{\mu^{*}e} K$. Since $A \cap M_2$ is a submodule of M_2 and M_2 is an injective module, then there is a direct summand D of M_2 such that $A \cap M_2 \leq_{\mu^{*}e} D$. Hence A $= [(A \cap M_2) \bigoplus A'] \leq_{\mu^{*}e} D \bigoplus K$, where $D \bigoplus K$ is a direct summand of M. Thus M is μ^{*-} extending.

Proposition (4.14): Let $M = M_1 \bigoplus M_2$ such that M_1 is μ^* -extending and M_2 is injective module. Then M is μ^* -extending module if and only if for every submodule A of M such that $A \cap M_2 \neq 0$, there is a direct summand D of M such that $A \leq_{\mu^*e} D$.

Proof: Suppose that for every submodule A of M such that $A \cap M_2 \neq 0$, there is a direct summand D of M such that $A \leq_{\mu^*e} D$. Let A be a submodule of M such that $A \cap M_2 = 0$. Since $M_2 + A = M_2 = M_2$.

 $\frac{M_2 + A}{A} \cong M_2$ is an injective module , there is a

submodule *M'* of *M* containing *A* such that $\frac{M}{A}$ =

$$\frac{M'}{A} \oplus \frac{(M_2 + A)}{A}$$
. It is easy to see that $M = M' \oplus M_2$.

Since $M \cong \frac{M}{M_2} \cong M_1$ is μ^* - extending, so there is a direct

summand *K* of *M*', hence *K* is a direct summand of *M*, such that $A \leq_{\mu^* e} K$. Thus *M* is μ^* - extending. The proof of the converse is obvious.

<u>**Proposition**</u> (4.15): Let R be a PID, then the following statements are equivalent:

- 1- $\bigoplus_{I} R$ is μ^* -extending, for every index set *I*.
- 2- Every projective *R* module is µ*-extending.

<u>Proof:</u> (1) \Rightarrow (2) Let *M* be a projective *R*- module , then by [10, Corollary (4.4.4), p.89] ,there exists a free *R*- module *F* and an epimorphism $f: F \longrightarrow M$. Since *F* is free, then $F \cong \bigoplus_{I} R$, for some index set *I*. Now consider the following short exact sequence:

$$0 \longrightarrow Kerf \xrightarrow{l} \bigoplus R \xrightarrow{f} M \longrightarrow 0$$

Where *i* is the inclusion map. Since *M* is projective, then the sequence splits .Thus $\bigoplus_{I} R = Kerf \bigoplus M$. Since $\bigoplus_{I} R$ is μ^* -extending, then M is μ^* - extending, by Prop. (4.6). (2) \Rightarrow (1) Clear.

By the same argument ,we can prove the following:

<u>**Proposition**(4.16)</u>: Let R be a PID, then the following statements are equivalent:

1- \bigoplus_{I}^{\oplus} R is μ^* -extending, for every finite index set *I*.

2- Every finitely generated projective *R*- module is μ^* -extending.

References

[1] K.R. Goodearl, *Ring Theory, Nonsingular Rings and Modules*, Marcel Dekker, New York, 1976.

[2] N.V. Dungh, D. V. Huynh, P. F. Smith and R. Wisbauer, *Extending Modules*, Pitman Research Notes in Mathematics Series 313, Longmon, New York 1994.

[3] W. Khalid, E. M. Kamil, *On a generalization of small submodules*, Sci. Int. (Lahore), 30 (3), 359-365, 2018.

[4] Y. Zhou, *Relative socle, relative radical, and chain condition*, Math. Japonica, 38(3) 525-529, 1993.

[5] J. T. Knight, *Commutative algebra*, Cambridge university press, 1971.

[6] G. Desale, W. K. Nicholoson, *Endoprimitive ring*, J., Algebra, (70), P. 548-560, 1981.

[7] B. L. Osofsky, A construction of nonstandard uniserial modules over valuation domain, Bull. Amer. Math., Soc. 25, 89-97, 1991.

[8] N. Orhan, D. K. Tutuncu and R. Tribak, *On Hollow-lifting Modules*, Taiwanese J. Math, 11(2), 545-568, 2007.

[9] V. Erdogdu , *Distributive Modules*, Can. Math. Bull 30, (248-254), 1987.

[10] F. Kasch, *Modules and Rings*, Acad. Press, London, 1982.

[11] R. Wisbauer, *Foundation of module and ring theory*, Gordon and Breach, Philadelphia, 1991.

[12] P. F. Smith and Tercan, *Continuous and quasicontinuous modules*, Houston J. Math, 18, 339-348, 1992.

[13] M. S. Abass , *On fully stable modules* , Ph.D. Thesis, University of Baghdad, 1991.