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Abstract: Let R be an associative ring with identity and let M be a left R- module. As a generalization of essential submodules Zhou defined 

an Ғ- essential submodules provided it has a nonzero intersection with any nonzero submodule in Ғ where Ғ is a collection of R- modules 

such that if MҒ , then M'Ғ for any module M' isomorphic to M. In this article we study µ*- essential submodules as a dual of µ-small 

submodules provided it has a nonzero intersection with any nonzero singular submodule of M. Also we define and investigate µ*-extending 

modules with some examples and basic properties. 
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1. Introduction 

    Let R be an associative ring with unity and let M be 

unitary left R- module. A submodule A of M is said to be 

essential in M, (denoted by A≤e M), if for any submodule B 

of M , A B = 0 implies B = 0 [1], and a submodule A of M 

is said to be closed in M if A has no proper essential 

extension in M; that is if A≤e B ≤M , then A = B [1]. An R- 

module M is called extending (or CS- module) , if every 

submodule of M is essential in a direct summand of M. It is 

well known that an R- module M is extending if and only if 

every closed submodule of M is a direct summand [2]. A 

submodule A of M is called µ- small submodule of M 

(denoted by A<<µ M) if whenever M = A + X , 
X

M
 is 

cosingular , then M = X , see [3] 

    Following  [4], Zhou defined an Ғ- essential submodules 

provided it has a nonzero intersection with any nonzero 

submodule in Ғ where Ғ is a collection of R- modules such 

that if MҒ , then M'Ғ for any module M' isomorphic to 

M. In this paper we introduce µ*- essential submodules as a 

dual of µ-small submodules provided it has a nonzero 

intersection with any nonzero singular submodule of M.  

   An R- module M is called µ*- extending module if every 

submodule of M is µ*- essential in a direct summand. 

   In section two , we define and study µ*-essential 

submodules , µ*- closed submodules and µ*- uniform 

modules. 

   In section three , we introduce µ*- extending modules with 

some examples and basic properties , we give sufficient 

conditions for a submodules of µ*- extending modules to be 

µ*- extending module.  

    In section four , we give various characterizations of µ*- 

extending modules and study the direct sum of µ*- extending 

modules. 

2. µ*-essential and µ*- closed submodules. 

    In this section, we introduce µ*- essential submodules and 

µ*- uniform modules as a generalization of essential 

submodules and uniform modules respectively which are 

duals of µ- small submodules and µ- hollow modules. Also , 

we define a µ*- closed submodules which is stronger than 

closed submodules. We study the basic properties of them 

that are relevant to our work. 

Definition (2.1): Let A be a submodule of an R- module M, 

M is said to be µ*-essential extension to A or A is a µ*- 

essential in M if for any nonzero singular submodule B of M 

, we have A B 0. It will be denoted by A≤µ*e M. 

Remarks and Examples (2.2). 

(1) It is clear that µ*- essential submodules are 

generalizations of essential submodules. There is a µ*- 

essential submodule of an R- module M which is not 

essential in M. For example: Consider Z6 as Z6- module 

. Since Z6 is nonsingular Z6- module , then { 0 , 3 } and 

{ 0 , 2 , 4 } are µ*- essential in Z6 which are not 

essential in Z6. 

(2) Every nonzero submodule of Q as Z- module is µ*- 

essential in Q. 

(3) Every nonzero cyclic submodule of Z as Z- module is 

µ*- essential in Z. 

(4) Consider Z6 as Z- module , { 0 , 3 } and { 0 , 2 , 4 } are 

not µ*- essential in Z6. 
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      In the following propositions we consider conditions 

under which µ*-essential submodules versus essential 

submodules. 

Proposition(2.3): Let M be a singular R- module and let A be 

a submodule of M , then A≤µ*e M if and only if A≤e M. 

Proof: It is clear.  

    Let R be a commutative integral domain and M be an R- 

module. Recall that T(M) = {mM: rm = 0, for some 

nonzero rR} is called the torsion submodule of M. If T(M) 

= M (if T(M) = 0), then M is called torsion (torsion free) 

module, see [5]. 

Proposition (2.4): Let M be a torsion module over a 

commutative integral domain R and A be a submodule of M. 

Then A≤µ*e M if and only if A≤e M. 

Proof:  It is clear by [5, P. 31] and Prop. (2.3). 

      Let M be an R-module . Recall that M is called a prime 

R- module if ann(x) = ann(y), for every nonzero elements x 

and y in M , see [6]. 

Proposition (2.5): Let M be a prime R- module with Z(M)
0 and A be a submodule of M. Then A≤µ*e M if and only if 

A≤e M. 

Proof: Assume that A≤µ*e M. To show that M is singular . 

Let 0 xZ(M), then ann(x) ≤e R and let 0 yM. Since 

M is prime module , then ann(x) = ann(y) and hence y

Z(M). Thus Z(M) = M and hence A≤e M, by Prop. (2.3). The 

proof of the converse is clear.                                         

Next, we give characterizations of µ*- essential 

submodules. 

Proposition (2.6):  Let M be an R- module and let A be a 

submodule of M , then A≤µ*e M if and only if for any nonzero 

cyclic singular submodule K of M ,  AK 0. 

Proof:  Let K be a nonzero cyclic singular submodule of M 

and let 0 xK. By our assumption 0 <x> A≤ AK. 

Hence AK 0. The proof of the converse is clear.     

Proposition (2.7):  Let M be an R- module and let A be a 

submodule of M , then A≤µ*e M if and only if for any nonzero 

element x in M with Rx singular has a nonzero multiple in A. 

Proof: Let 0  xM with Rx singular submodule of M. By 

Prop.  (2.6) Rx A 0. Hence there is rR such that 0 
rxA. The proof of the converse is clear.                       

Proposition (2.8): Let M be any R- module. Then the 

following are hold. 

(1) Let submodules A≤ B≤ M. Then A≤µ*e M if and only if 

A≤µ*e B and B≤µ*e M. 

(2) Let A1≤µ*e B1≤  M and A2≤µ*e B2 ≤  M , then A1 A2 ≤µ*e 

B1 B2. 

(3) If f : M1M2 is an R- homomorphism and A≤µ*e M2 , 

then f 
-1

 (A) ≤µ*e M1. 

(4) Let {Aα}  Ʌ be an independent family of 

submodules of M and Aα≤µ*e Bα,  Ʌ, then 





Aα≤µ*e 





Bα. 

Proof. (1) Suppose that A≤µ*e M and let L be a nonzero 

singular submodule of B. Since A≤µ*e M, then A L 0. 

Hence A≤µ*e B. Now let K be a nonzero singular submodule 

of M , then 0  AK≤ B K. Thus B≤µ*e M.  

Conversely , assume that A≤µ*e B≤ µ*e M and let L be a 

nonzero singular submodule of M , then B L is a nonzero 

singular submodule of B. But A≤µ*e B , therefore A B L 

= A L 0. Thus we get the result. 

(2) Assume that A1≤µ*e B1≤ M and A2≤µ*e B2 ≤ M and let L be 

a nonzero singular submodule of B1 B2 ≤ B1. Since A1≤µ*e 

B1 , then A1 L 0 and hence it is a nonzero singular 

submodule of B2. But A2≤µ*e B2 , therefore A1 A2 L 0. 

Thus A1 A2 ≤µ*e B1 B2. 

(3) Let f : M1M2 be an R- homomorphism and let A≤µ*e 

M2. To show that f
 -1

 (A) ≤µ*e M1 , let 0 xM1 with Rx is 

singular submodule of M1, then f (Rx) is a singular 

submodule of M2. Consider the following two cases. 

(a) if x  f
 -1

 (A) , we are done. 

(b) if x f 
-1

 (A) , 0 f (x)   M2 . Since A≤µ*e M2  , then 

there is rR such that 0   r f (x)  A, hence 0 rx  f
 -1

 

(A). Thus f
 -1

 (A) ≤µ*e M1. 

(4) We use the induction on the number of elements of Ʌ. 

Suppose that the family has only two elements. i.e. , {A1 , 

A2} is independent family in M, A1≤µ*e B1 and A2≤µ*e B2. Let 

π1 : B1B2 B1 and π2 : B1B2 B2 be the projection 

maps. Since A1≤µ*e B1 and A2≤µ*e B2 , then π1
-1

(A1) = A1 B2 

≤µ*e B1B2 and π2
-1

(A2) = B1 A2 ≤µ*e B1B2, by(3) and 

hence A1A2 = (A1B2) ( B1 A2) ≤µ*e B1B2 , by 

(2). 

Now, assume that the result is true for the case when the 

index set with  n-1 elements. Now let {A1,A2,…..,An} be an 

independent family and assume that Ai≤µ*e Bi ,  i = 1, 

2,….,n. By the previous case we have  





1

1

n

i

Ai≤µ*e




1

1

n

i

Bi and 
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An≤µ*e Bn , hence we get 

  



n

i 1

Ai≤µ*e


n

i 1

Bi. Finally, let {Aα}

 Ʌ be an independent family of submodules of M and 

Aα≤µ*e  Bα,  Ʌ. Let N be a nonzero singular submodule 

of 





Bα and let x be a nonzero element in N. So x = 

b1+b2+….+bn , where biBα
i , 
 i = 1,2,…,n. Hence N  

(Aα1+ Aα2+…..+ Aαn) 0 which implies that N





Aα 0. 

Thus 





Aα≤µ*e





Bα.                                                        

Notes. (1) Note that {Bα}  Ʌ in proposition (2.8-4) need not 

be an independent family. Example: Let M be the Z- module 

Z Z2 and let A1= 0 Z2 , B1= Z Z2 , A2 = B2 = Z 0 . 

One can easily show that A1≤µ*eB1 and A2≤µ*eB2 and A1 A2 

= {0} but B1 B2 = Z 0 . Hence {B1,B2} is not 

independent family. 

(2) Let A1, A2, B1 and B2 be submodules of an R- module M. 

If A1≤µ*eB1 and A2≤µ*eB2 , then it is not necessary that 

(A1+A2) ≤µ*e (B1+B2) as the following example shows: 

Consider the Z- module Z Z2. Let A1 = A2 = Z( 2 , 0 ) and 

B1 = Z(1 , 0 )  , B2 = Z(1 ,1 ). One can easily show that 

A1≤µ*eB1 and A2≤µ*eB2. But (A1+B1) is not µ*-essential in 

(B1+B2) , where there exists a nonzero singular submodule K 

={ 0 } Z2 of  (B1+B2) such that (A1+A2)K={( 0 , 0 )}. 

           Recall that a submodule A of an R- module M is called 

a closed submodule of M if A has no proper essential 

extension. See [1].  

    Now, we define the µ*- closed submodules and introduce 

the basic properties of these submodules. 

Definition (2.9): Let A be a submodule of an R- module M, 

we say that A is µ*-closed in M (briefly A≤µ*c M) if A has no 

proper µ*- essential extension in M. 

    The following proposition ensure the existences of µ*- 

closed submodules. 

Proposition (2.10): Let M be an R- module . Then every 

submodule is µ*- essential in µ*- closed submodule of M. 

Proof: Let A be a submodule of M. Consider the collection Γ 

={K: K ≤ M: A≤µ*e K}. It is clear that Γ is nonemplty set . Let 

{Cα}  Ʌ be a chain in Γ. To show that A≤µ*e 


 Cα, let 0

 x


 Cα with Rx is singular submodule of


 Cα, then 

there is α Ʌ such that 0 xCα  .But A≤µ*e Cα, 

Ʌ , therefore there exists rR such that 0 rxA , hence 

A≤µ*e 


 Cα which means that


 Cα Γ. By Zorn's lemma Γ 

has a maximal element say H. To show that H is µ*- closed 

in M , let B be a submodule of M such that H≤µ*e B , then 

A≤µ*e H≤µ*e B and hence A≤µ*e B , by Prop. (2.8) . But H is 

maximal element in Γ. Thus H = B.                                   

Remarks and Examples (2.11). 

(1) Every µ*- closed submodule of an R- module M is 

closed in M. The converse is not true in general. For 

example , Consider Z6 as Z6- module { 0 , 3 } and { 0 ,

2 , 4 } are closed in Z6 but not µ*- closed in Z6. 

(2) Consider Z6 as Z- module , { 0 , 3 } and { 0 , 2 , 4 } are 

µ*-closed submodules of Z6. 

(3) In Z4 as Z- module , { 0 , 2 } is not µ*- closed in Z4. 

(4) Let M be a singular R- module. Then A is closed in M if 

and only if A is µ*- closed in M. 

(5) Let M be a torsion module over a commutative integral 

domain R and A be a submodule of M. Then A≤µ*c M if 

and only if A≤c M. 

(6) Let M be a prime R- module with Z(M) 0 and A be a 

submodule of M. Then A≤µ*c M if and only if A≤c M. 

(7) It is well known that every direct summand of an R- 

module M is closed in M. But in case µ*-closed there is 

no relationship with direct summands. For example , Z6 

as Z6- module , the nontrivial direct summands of Z6 are 

{ 0 , 3 } and { 0 , 2 , 4 } which are not µ*- closed in Z6. 

(8) If a submodule A of an R- module M is µ*- closed and 

µ*- essential in M , then A = M. 

(9) The intersection of µ*- closed submodules of M need 

not be µ*- closed in M. For example , consider M = Z

 Z2 as Z- module , let A = Z 0  , B = Z(1,1 ). Since 

0 Z2 is the only singular submodule of M and has 

zero intersection with A , then A ≤µ*c M. Similarly B 

≤µ*c M , but A B = 2Z 0  which is not µ*- closed 

in M. 

    Next, we give the basic properties of µ*-closed 

submodules. 

Proposition (2.12): Let M be an R- module. If A≤µ*c M, then 

A

B
≤µ*e

A

M
, whenever B≤µ*e M with A ≤ B. 

Proof. Suppose that A ≤ B ≤µ*e M and let 
A

L
be a singular 

submodule of 
A

M
such that 

A

L


A

B
= A , then L B = 
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A. Since B≤µ*e M , then A ≤µ*e L , by Prop. (2.8-2). But A is 

µ*- closed in M , therefore A = L. Thus 
A

B
≤µ*e

A

M
.     

Proposition (2.13):  Let f : MM' be an epimorphism and 

let A be a submodule of M such that Kerf ≤ A. If A is µ*- 

closed in M , then f (A) is µ*- closed in M'. 

Proof. Let K' be a submodule of M' such that f (A) ≤µ*e K' , 

then f 
-1

(f (A)) ≤µ*e f 
-1

 (K') , by Prop. (2.8). One can easily 

show that f 
-1

(f (A)) =A, hence A ≤µ*e f 
-1

 (K'). But A is µ*- 

closed in M , therefore A = f 
-1

 (K') , and hence f (A) = K'. 

Thus f (A) is µ*- closed in M'.                                          

    One can easily prove the following corollaries. 

Corollary (2.14): µ*- closed submodule is closed under 

isomorphism. 

Corollary (2.15): Let A and B be submodules of an R- 

module M with A≤ B. If B is µ*- closed in M, then 
A

B
is µ*- 

closed in 
A

M
. 

Proposition (2.16): Let M be an R- module and let A , B be 

submodules of M with A≤ B ≤ M. If A is µ*- closed in M , 

then A is µ*- closed in B. 

Proof: Suppose that A≤µ*e L ≤ B ≤ M. But A is µ*- closed in 

M , therefore A = L. Thus A is µ*- closed in B.                  

    It is easy to prove the following corollary. 

Corollary (2.17): Let A and B be submodules of an R- 

module M if A B is µ*- closed in M , then A B is µ*- 

closed in A and B. 

    We cannot prove the transitive property for µ*- closed 

submodules. However under certain condition we can prove 

this property as we see in the following result. 

   Recall that an R- module M is called chained module if 

for each submodules A and B of M either A ≤ B or B ≤ A , see 

[7]. 

Proposition (2.18): Let M be chained R- module and let A 

and B be submodules of M such that A ≤ B ≤ M. If A ≤µ*c B ≤ 

µ*c M , then A≤ µ*c M. 

Proof. Let K be a submodule of M such that A≤µ*e K ≤ M. By 

our assumption we have two cases: If K ≤ B. Since A is µ*- 

closed in B , then A = K, hence A≤ µ*c M. If B ≤ K, since 

A≤µ*e K, so B ≤µ*e K , by Prop. (2.8). But B ≤ µ*c M, therefore 

B = K , hence A≤µ*e B. But A ≤µ*c B , therefore A = B = K. 

Thus A is µ*- closed in M.                                                  

    The following proposition shows that the direct sum of 

µ*-closed submodules is again µ*- closed . 

Proposition (2.19): Let M1, M2 be two R- modules. If A1≤µ*c 

M1 and A2≤µ*c M2 , then A1A2≤µ*c M1M2. 

Proof: Assume that A1A2≤µ*e B1B2 , B1 ≤ M1 and B2 ≤ 

M2 , let i1: M1  M1M2 and i2: M2  M1M2 be the 

inclusion maps. Since A1A2≤µ*e B1B2 , then i1
-1

(A1

A2)≤µ*e i1
-1

(B1B2). Note that i1
-1

(A1A2) = {xM1: i1(x)

(A1A2)} = {xM1: (x,0)(A1A2)} =  A1≤µ*e i1
-1

(B1

B2) = B1. Similarly , A2≤µ*e B2. But A1≤µ*c M1 and A2≤µ*c 

M2 , therefore A1 = B1 and A2 = B2. Thus A1A2≤µ*c M1
M2.                                                                                    

     An R- module M is called uniform module if every 

nonzero submodule of M is essential in M , see [1]. 

   Now , we introduce µ*- uniform modules as a 

generalization of uniform modules which is a dual of µ- 

hollow modules. 

Definition (2.20): An R- module M is called µ*- uniform if 

every nonzero submodule of M is µ*- essential in M. 

Remarks and Examples (2.21): 

(1) Every nonsingular module is µ*- uniform. The 

converse is not true in general , for example , Z4 as Z- 

module. 

(2) Every torsion free module over a commutative integral 

domain is µ*- uniform. 

(3) Clearly that every uniform module is µ*- uniform , 

hence Q as Z- module and Z- as Z- module are µ*- 

uniform modules. 

(4) The converse of (3) is not true in general. For example , 

Z6 as Z6- module.  

(5) Z6 as Z- module is not µ*- module. 

(6) Let M be a singular R- module. Then M is uniform if 

and only if M is µ*- uniform. 

(7) Let M be a torsion module over a commutative integral 

domain R. Then M is uniform if and only if M is µ*- 

uniform. 

(8) Let M be a prime R- module with Z(M) 0. Then M is 

uniform if and only if M is µ*- uniform. 

     The following theorem gives a characterization of µ*- 

uniform modules. Compare with [3, theorem (3.7)]. 

Proposition (2.22): Let M be an R- module. Then M is µ*-

uniform if and only if every nonzero singular submodule of 

M is essential in M. 
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Proof: ( ) Assume that M is µ*- uniform and let A be a 

nonzero singular submodule of M. Assume that there exists a 

nonzero submodule B of M such that A B = 0. Since M is 

µ*- uniform , then B ≤µ*e M and we have A is nonzero 

singular submodule of M , then A B  0, which is a 

contradiction. 

( ) To show that M is µ*- uniform , let A be a nonzero 

submodule of M and assume that A is not µ*- essential in M , 

that is there exists a nonzero singular submodule B of M such 

that A B = 0. By our assumption B≤e M , then A = 0, which 

is a contradiction.                                                              

Compare the following Prop. with [3, Prop. (3.8)] 

Proposition (2.23): A nonzero monomorphic image of µ*- 

uniform is µ*- uniform. 

Proof: Let f :M M' be an R- monomorphism and assume 

that M is µ*- uniform , we have to show that M' is µ*- 

uniform , let A be a nonzero submodule of M', then f (A) 0 

, if f (A) = 0 , then A≤ Kerf = 0 which is a contradiction. 

Since M' is µ*- uniform , then f (A) ≤µ*e M' and hence  A≤µ*e 

M.                                                                                     

Corollary (2.24): A submodule of µ*- uniform is again µ*- 

uniform.  

Note. A quotient of µ*- uniform need not be µ*- uniform. 

For example , Z as Z- module is µ*- uniform but 
Z

Z

6
 Z6 

which is not µ*- uniform.  

    The following proposition gives a condition under which  

a quotient of µ*- uniform is µ*- uniform.  

Proposition (2.25): Let M be a µ*- uniform and let A be a 

µ*- closed submodule of M , the 

n 
A

M
is µ*- uniform. 

Proof: Let 
A

L
be a nonzero submodule of 

A

M
 , hence L is 

nonzero submodule of M. But M is µ*- uniform , therefore L 

≤µ*e M. Since A is µ*- closed in M , then 
A

L
≤µ*e

A

M
, by 

Prop. (2.12). Thus 
A

M
is µ*- uniform.      

         A direct sum of µ*- uniform modules need not be µ*- 

uniform. For example , let M = Z8 Z2 as Z- module, clearly 

that Z8 and Z2 are µ*- uniform Z- modules but M is not µ*- 

uniform , where there exists a singular submodule A = <( 0 ,

1 )> which is not essential in M  since there is B = <( 2 , 0 )> 

such that A B = 0. 

   Now , we give certain conditions under which a direct sum 

of µ*- uniform modules is µ*- uniform. 

     Let M be an R- module. Recall that a submodule A of M is 

called a fully invariant if g(A) ≤ A , for every g End(M) 

and M is called duo module if every submodule of M is fully 

invariant. See [8]. 

Proposition (2.26): Let M = M1M2 be a duo module. If 

M1 and M2 are µ*- uniform modules , then M is µ*- uniform. 

Provided that AMi  0,  i = 1,2. 

Proof: Let A be a nonzero submodule of M. Since M is duo 

module , then A is fully invariant and hence A = (AM1)
( AM2). Since each of (AM1) and (AM2) is a 

nonzero submodule of M1 and M2 respectively , it follows 

that (AM1)≤ µ*e M1 and (AM2)≤ µ*e M2. Then A≤ µ*e M , 

by Prop. (2.8).                                                                   

    Recall that an R- module M is called distributive if for all 

A , B and C ≤M , A (B+C) = (A B)+(A C). See [9]. 

    In similar argument one can easily prove the following 

proposition. 

Proposition (2.27): Let M = M1M2 be a distributive 

module. If M1 and M2 are µ*- uniform modules , then M is 

µ*- uniform. Provided that  AMi  0,  i = 1,2. 

3. µ*-Extending modules. 

    In this section , we introduce the concept of µ*- extending 

modules as a generalization of extending modules. We 

generalize some properties of extending modules to µ*- 

extending modules and discuss when the submodule of µ*- 

extending module is µ*- extending module.  

Definition (3.1): An R- module M is called µ*- extending 

module if every submodule of M is µ*- essential in a direct 

summand. Clearly that every µ*- uniform module is µ*- 

extending. The converse is not true in general. For example , 

Z6 as Z- module. 

Remarks and Examples (3.2). 

(1) Every extending module is µ*- extending , hence Z as 

Z- module is µ*- extending. The converse is not true in 

general . For example , let R = Z[x] be a polynomial 

ring of integers Z and let M = Z[x] Z[x]. Since M is 

nonsingular , then it is µ*- uniform and hence it is µ*- 

extending , but M is not extending , by [2 , P.109]. 
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(2) Let M be a singular R- module. Then M is µ*- 

extending if and only if M is extending. 

(3) Let M be a torsion module over a commutative integral 

domain. Then M is µ*- extending if and only if M is 

extending. 

(4) Let M be a prime R- module with Z(M) 0. Then M is 

µ*- extending if and only if M is extending. 

(5) For any prime number p , the Z- module M = Zp Zp2 

is µ*- extending. 

(6) For any prime number p , the Z- module M = Zp Zp3 

is not µ*- extending. 

     The following proposition gives a condition under which 

the µ*- extending module and µ*- uniform module are 

equivalent. 

Proposition (3.3): Let M be an indecomposable module. 

Then the following statements are equivalent. 

(1) M is µ*- uniform.  

(2) M is µ*- extending. 

(3) Every cyclic submodule of M is µ*- essential in a direct 

summand of M. 

Proof: (1) (2) (3) It is clear. 

(3) (1) Assume that every cyclic submodule of M is µ*- 

essential in a direct summand of M and let A be a nonzero 

submodule of M , let xA, hence Rx is µ*- essential in a 

direct summand D of M. But M is indecomposable, therefore 

D = M. Since Rx ≤ A≤ M, then A ≤µ*e M. Thus M is µ*- 

uniform.                                                                            

     Now , we give various conditions under which a 

submodule of a µ*- extending module is µ*- extending.   

Proposition (3.4): Let M be a µ*- extending R- module and 

let A be a submodule of M such that the intersection of A 

with any direct summand of M is a direct summand of A, 

then A is a µ*- extending module. 

Proof: Let X ≤ A ≤ M. Since M is µ*- extending , then there 

exists a direct summand D of M such that X≤µ*e D. By our 

assumption AD is a direct summand of A. Hence X = (X

 A)≤µ*e (AD) , by Prop. (2.8). Thus A is µ*- extending. 

                                                                                        

   Let M be an R- module. Recall that a submodule A of M is 

called a fully invariant if g(A) ≤ A , for every g End(M) 

and M is called duo module if every submodule of M is fully 

invariant. See [8]. 

Proposition (3.5): Every fully invariant submodule of µ*- 

extending module is µ*- extending. 

be a fully  A extending module and let -be a µ* MLet  Proof.

invariant submodule of M. Let X be a submodule of A. Since 

M is µ*- extending , then there exists a direct summand D of 

M such that X ≤µ*e D. Let M = DD' , where D' ≤ M. Now 

consider the projection map P: M  D ,then (1-P): M 

 D'. Claim that A=(A P (M )) ((I-P)(M )  A). 

To show that , let  x  A, then x =a+b  , aD and bD'. 

Now P(x) =P(a+b) =a and (1-P)(x) = b. But A is fully 

invariant , therefore P(x) = aP(M) A and (1-P)(x) = b

(1-P)(M) A. Thus A=(A P(M)) ((I-P)(M) A) = 

(AD) (AD'). Since X≤µ*eD, then X=(X A) ≤µ*e (A

D).Thus  A is µ*-extending , by Prop.(2.8).                        

              

Corollary (3.6): Let M be a duo µ*- extending module , then 

every submodule of M is µ*- extending.   

     The next proposition gives another condition under which 

the submodule of µ*- extending module is a µ*- extending.  

    Recall that an R- module M is called distributive if for all 

A , B and C ≤M , A (B+C) = (A B)+(A C). See [9]. 

Proposition (3.7): Let M be a distributive µ*- extending R- 

module, then every submodule of M is µ*- extending. 

be a   Xand  let   Mbe  a  submodule of    ALet    Proof:

submodule of  A. Since  M  is µ*- extending , then there 

exists a direct summand D of M such that X≤µ*e D, let M=D

D' , where D'≤M. But M is distributive, therefore A=(A

D) (AD') , then     (AD) is a direct summand of 

A and X≤µ*e (AD). Thus A is µ*-extending.                        

                                               

 

    Let M be an R- module. Recall that a proper submodule A 

of M is called a maximal submodule if whenever AB≤M , 

then B = M. Equivalently , A is maximal submodule if M = 

Rx+A ,  xA , see [10]. 

 

Proposition (3.8): Let M be a µ*- extending module which 

contains maximal submodules. Then for any maximal 

submodule A of M , either  A ≤µ*e M or M = AB , for some 

simple submodule B of M. 

Proof: Let A be a maximal submodule of M and suppose that 

A is not µ*- essential submodule of M , then there is a 

nonzero singular submodule B of M such that A B = 0 , let 

xB and xA. Since A is maximal submodule of M , then 

M = A + Rx ≤ A+B , hence M = AB. Since B
A

M
 , so B 

is simple.                                                                           

   A module M is called local module if it has a largest 

submodule , i.e, a proper submodule which contains all other 
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proper submodules. For a local module M, Rad(M) , the 

Jacobson radical of M is small in M , see [11]. 

 

Corollary (3.9): Let M be a local µ*- extending module  , 

then Rad(M)≤µ*e M. 

Proof: Since M is local module , then Rad(M)<<M , hence 

Rad(M) can not be a direct summand of M. Thus Rad(M)≤µ*e 

M , by Prop. (3.8).                                      

 

4. Characterizations of µ*-extending modules. 

     In this section , we give various characterizations of µ*- 

extending modules. Also, we give some conditions under 

which the direct sum of µ*- extending modules is µ*- 

extending module.  

Theorem (4.1): Let M be an R- module. Then M is µ*- 

extending module if and only if every µ*- closed submodule 

of M is a direct summand. 

Proof: ( ) Suppose that M is µ*- extending and let A be a 

µ*- closed in M , then there is a direct summand D of M such 

that A≤µ*e D. But A is µ*- closed in M , therefore A = D. 

( ) To show that M is µ*- extending , let A be a 

submodule of M , then there is a µ*- closed submodule B of 

M such that A≤µ*e B , by Prop. (2.10). By our assumption , B 

is a direct summand of M. Thus M is µ*- extending module.  

                                                       

Theorem (4.2):  Let M be an R- module. Then the following 

statements are equivalent. 

(1) M is µ*- extending module. 

(2) For every submodule A of M , there is a decomposition 

M = DD' , such that A ≤ D and D'+A ≤µ*e M. 

(3) For every submodule A of M , there is a decomposition 

A

M
= 

A

D


A

K
such that D is a direct summand of M 

and K≤µ*e M. 

Proof:  (1) (2) Let M be a µ*- extending and let A be a 

submodule of M , there is a direct summand D of M such that 

A ≤µ*e D, then M = DD' , D' ≤ M. Since {A , D'} is an 

independent family , then A+D' ≤µ*e M , by Prop. (2.8). 

(2) (3) Let A be a submodule of M. By (2) , there is a 

decomposition M = DD' , such that A ≤ D and D'+A ≤µ*e 

M. Claim that 
A

M
=

A

D


A

AD '
 . Since M = DD' , 

then 
A

M
=

A

DD '
= 

A

D
+

A

AD '
and 

A

D


A

AD '
= 

A

ADD )'( 
=

A

DDA )'( 
=A , hence 

A

M
=

A

D


A

AD '
. Take K = D'+A , so we get the result. 

(3) (1) To show that M is µ*- extending , let A be a 

submodule of M. By (3) , there is a decomposition 
A

M
= 

A

D


A

K
such that D is a direct summand of M and K≤µ*e 

M. It is enough to show that A ≤µ*e D. Let i :D  M be the 

injection map. Since K≤µ*e M , then i 
-1

 (K) ≤µ*e i 
-1

 (M) , that 

is D K≤µ*e D. One can easily show that D K = A , so M 

is µ*- extending module.                                                   

Proposition (4.3): Let M be an R- module. Then M is µ*- 

extending module if and only if for each µ*- closed 

submodule A of M , there is a complement B of A in M such 

that every homomorphism f : ABM can be lifted to a 

homomorphism g : MM. 

Proof: This is a direct consequence of [12 , Lemma 2].  

Proposition (4.4): Let M be an R- module. Then M is µ*- 

extending module if and only if for every submodule A of M 

, there exists an idempotent f End (M) such that A ≤µ*e  f 

(M). 

Proof: Clear. 

       The following proposition gives another characterization 

of µ*- extending module. 

Proposition (4.5): Let M be an R- module , then M is µ*- 

extending module if and only if for each direct summand A 

of the injective hull E(M) of M , there exists a direct 

summand D of M such that (AM)≤µ*e D.  

be a  Band let  Mbe a submodule of  ALet Proof: 

complement of A , then AB ≤e M ,by [1, Prop. (1.3)]. 

Since M≤e E(M) , then AB ≤e E(M). Thus E(A) E(B) = 

E(AB) = E(M). By our assumption , there exists a direct 

summand D of M such that E(A)M ≤µ*e D. But A ≤e E(A) , 

therefore AM≤µ*e E(A)M ≤µ*e D , hence A ≤µ*e D. Thus 

M is µ*- extending. The proof of the converse is clear.           

                                                

   The following proposition shows that the direct summand 

of µ*- extending module is µ*- extending. 

Proposition (4.6): A direct summand of µ*- extending 

module is µ*- extending. 
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Proof: Let M = AB be a µ*- extending module. To show 

that A is a µ*- extending , let X be a µ*- closed submodule of 

A , then XB is a µ*- closed submodule of M , by Prop. 

(2.19). Hence XB is a direct summand of M , then M = X

B Y , Y ≤ M , that is X is a direct summand of M. But X 

≤ A, therefore X is a direct summand of A. Thus A is µ*- 

extending module.                                                              

 

       The following proposition gives a condition under which 

a quotient of µ*- extending module is a µ*- extending. 

 

Proposition (4.7): Let M be a µ*- extending module and let 

A be a µ*- closed submodule of M , then 
A

M
is µ*- 

extending module. 

 -be a µ* Aextending module and let  -be a µ* MLet  Proof:

closed submodule of M  , then A is a direct summand of M , 

let M = AA' , for some submodule A' of M , hence 
A

M


A' is a µ*- extending module , by Prop. (3.6).                          

                                                    

Corollary (4.8): Assume that f : MM' is an R- 

homomorphism and let Kerf be a µ*- closed submodule of M 

, then f (M) is µ*- extending.  

Proof: Let f : MM' be an R- homomorphism and let Kerf 

be a µ*- closed submodule of M , then 
Kerf

M
 f (M) is µ*- 

extending module.                                                          

   The direct sum of µ*- extending modules need not be µ*- 

extending , for example , let M = Z8 Z2 as Z- module, 

clearly that Z8 and Z2 are µ*- extending Z- module but M is 

not µ*- extending. 

        Now , we give sufficient conditions under which the 

direct sum of µ*-extending modules is a µ*-extending.  

 

Proposition (4.9):  Let M=M1M2 be a distributive 

module if M1 and M2 are µ*-extending , then M is µ*-

extending. 

and  1Mbe a distributive module ,  2M1M = MLet  Proof:

M2 are µ*-extending and let A ≤ M. Since M is distributive, 

then A = AM=  A (M1M2) = (AM1) (A
M2). Since M1 , M2 are  µ*-extending , then there exists a 

direct summand D1 of M1 and direct summand D2 of M2 such 

that (AM1) ≤µ*e D1 and (AM2) ≤µ*e D2. Hence A = (A

M1) (AM2)) ≤µ*e (D1D2) and D1D2 is a direct 

summand of M  , by Prop. (2.8). Thus M is µ*-extending.      

                               

Proposition (4.10): Let M =
Ii

 Mi be an R-module ,where 

Mi is a submodule of M ,∀ i I. If Mi is µ*-extending , for 

each iI and every µ*- closed submodule of M is fully 

invariant , then M is µ*-extending. 

:M iand  Mclosed submodule of  -µ*be a  ALet   Proof:

 Mi be the natural projection on Mi , for each i I. Let 

x A , then x = xi ,  i I , xiMi  ,  i (x) = xi. By our 

assumption, A is fully invariant and hence i (A)≤ AMi . 

So,  i (x)= xiAMi and hence x
Ii

  (AMi). Thus  

A ≤
Ii

  (AMi). But
Ii

  (AMi) ≤ A , therefore A=
Ii

  

(AMi) ,  i I .Since AMi ≤ Mi and Mi is µ*-

extending , then there  exists direct summands Di of  Mi  such 

 that (AMi) 
≤ µ*e Di . By Prop. (2.8)     A=(

Ii
 (AMi)) ≤ 

µ*e (
Ii

 Di) , for each i I. Thus M is µ*-extending.                

                           

Proposition (4.11) Let M1 and M2 be µ*-extending modules 

such that annM1+ annM2= R, then M1M2  is µ*-

extending. 

Since  .2M1Mbe a submodule of   ALet  Proof:

annM1+annM2=R, then by the same way of the proof of [13 

,Prop.4.2,CH.1] A=B C, where B is a submodule of M1 

and C is a submodule of M2. Since M1 and M2 are µ*-

extending , then there exists direct summands D1 of M1 and 

D2 of M2  such that B≤ µ*e D1 and C≤ µ*e D2 , hence A =(B

C) ≤ µ*e (D1D2) , by Prop. (2.8). Thus M is µ*-extending. 

                                                                  

Proposition (4.12): Let M = M1M2 be an R- module with 

M1 being µ*- extending and M2 is semisimple. Suppose that 

for any submodule A of M with AM1 is a direct summand 

of A. Then M is µ*- extending. 

. Then it is easy to see that Mbe a submodule of  ALet  Proof:

A+M1 = M1 [(A+M1)M2]. Since M2 is semisimple , then 

(A+M1)M2 is a direct summand of M2 and therefore A+M1 

is a direct summand of M. By our assumption A = (AM1)

A' , for some submodule A' of M. Since M1 is µ*- 

extending , then there is a direct summand D of M1 such that 

AM1 ≤µ*e D. Hence A = (AM1)A'≤µ*e D A'. Since 

   DA'≤A+M1≤M , then D A'  is a direct 

summand of M. Thus M is µ*- extending.                               
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Proposition (4.13): Let M = M1M2 with M1 being µ*- 

extending and M2 injective. Suppose that for any submodule 

A of M , we have AM2 is a direct summand of A, then M 

is µ*- extending. 

. By hypothesis , there is a Mdule of be a submo A Let Proof:

submodule A' of A such that A = (AM2)A'. Note that A'

M2 = 0 and hence 


'

'2

A

AM
M2 is an injective module 

, so there is a submodule M' of M such that 
'A

M
= 

'

'

'

'2

A

M

A

AM



. Thus it is easy to see that M = M2M' 

and that M' 
2M

M
M1. Since M1 is µ*- extending , then M' 

is µ*- extending , there is a direct summand K of M' such 

that M = KK' and      A' ≤µ*e K. Since AM2 is a 

submodule of M2 and M2 is an injective module , then there is 

a direct summand D of M2 such that AM2 ≤µ*e D. Hence A 

=  [(AM2)A']≤µ*e DK , where DK is a direct 

summand of M. Thus M is µ*- extending.                               

                                    

 

Proposition (4.14): Let M = M1M2 such that M1 is µ*- 

extending and M2 is injective module. Then M is µ*- 

extending module if and only if for every submodule A of M 

such that AM2 0 , there is a direct summand D of M 

such that A≤µ*e D. 

Proof: Suppose that for every submodule A of M such that A

M2 0 , there is a direct summand D of M such that A≤µ*e 

D. Let A be a submodule of M such that AM2 = 0. Since 

A

AM 2  M2 is an injective module , there is a 

submodule M' of M containing A such that 
A

M
= 

A

AM

A

M )(' 2  . It is easy to see that M = M'M2. 

Since M' 
2M

M
M1 is µ*- extending , so there is a direct 

summand K of M' , hence K is a direct summand of M , such 

that A≤µ*e K. Thus M is µ*- extending. The proof of the 

converse is obvious.                                                         

 

Proposition (4.15): Let R be a PID , then the following 

statements are equivalent: 

1- 
I
  R is µ*-extending, for every index set I. 

2- Every projective R- module is µ*-extending. 

Proof: (1) (2) Let M be a projective R- module , then by 

[10, Corollary (4.4.4), p.89] ,there exists a free R- module F 

and an epimorphism f : F   M. Since F is free, then F ≅

I
 R, for some index set I. Now consider the following short 

exact sequence: 

 
Where  i  is  the  inclusion  map . Since M  is  projective , 

then the sequence  splits .Thus 
I
 R=Kerf M. Since 

I
  

R is µ*-extending , then M is µ*- extending , by Prop. (4.6). 

(2) (1) Clear.                                                               

 

     By the same argument ,we can prove the following: 

 

Proposition(4.16): Let R be a PID , then the following 

statements are equivalent: 

1- 
I
 R is µ*-extending, for every finite index set I. 

2- Every finitely generated projective R- module is µ*-

extending. 
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