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1. Introduction

Our main aim in this text is to study the concept of

forwarding (backwarding, stationary) chain in sub-categories

of Self-maps in category Set.

In the category C suppose M is a nonempty chain of sub-

categories of C (under the inclusion relation, so elements of
M are sub-categories of C and for each o,F€M we

have ac f or fca (since M is a chain)). Also

suppose h: UM — UM isamap. We say M is [1]:

¢ a forwarding chain with respect to h if forall x € M we
have h(UM\x)cUM\k (e, h(UM\x)nxk is
empty),

a full-forwarding chain with respect to h if it is
forwarding and for all distinct x,A,ueM with

Xellk with

KCAcu there exists
h(X)eu\1,
a backwarding chain with respect to h if for all x e M

we have h(x) c «,

a full-backwarding chain with respect to h if it is
backwarding and for all distinct x,A,uzeM with

KkcAcu  there  exists Xeu\A  with
h(X)e A\,
e a stationary chain with respect to h if it is both

forwarding and backwarding chain with respect to h .
Let’s recall that for equivalence relation E on X and

xe X we have é:z{y e X :(x,y) e E} and quotient

X
space E::{é:ZEX}. Also N, denotes the least

infinite cardinal number, i.e., card(N) =%, (where N is
the collection of all natural numbers).

For self-map f:X — X consider two equivalence

relations 3, and R; on X with (see e.g. [2]):
(x,y) e3¢ < f(x) = f(y),
(X y)eR; & @Enm>1 f7(x)=1"(y)).

In this text for cardinal number 7z >1 suppose:
f X
e D, ={X — X :cardinality of the quotient space — s
g

less than 7},
f X
e E_={X — X :cardinality of the quotient space ‘J{T is
f

less than 7}.

We denote the sub-category of Set consisting of self-maps by
SSet and will denote self-map f : X — X by (X, f).

2. First operator: k times self-composition
In this section consider k>2 and h, :SSet — SSet with

h (X, f)=(X, f¥) (where f¥=fo---of (k times)).
Lemma 1. For (X, f)eSSet we have 3; =3I, and

Ry =N, thus card((‘x )gcard(;) and
)
£k ~f
card( X )=card(i).
R« R,

Proof. For each (X, f)eSSet and (X,y)e3; we have
f(x)=f(y) thus f*x)=f*(y)and (X y)e3,

therefore 3; < ka and

X
~ _)c\'
3¢ S
z z
—
3¢ ka
: X X
is onto, hence card(——)<card(—). Moreover,
\fk ~ g

X,y € X we have:

(X,y)eR, ©Inm=1(f"(x)=f"(y))
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<anm>1(f™(x) = f™(y))
<3Inm=1((F)")=(f)"(y))
< (X y)eR ..

Which leadsto R =% . and completes the proof.

Theorem 2. Consider sub-class M of

{SSet }u{D, :7 >1}:
a. M is backwarding with respect to h; .

nonempty

b. M is forwarding (resp. stationary) with respect to h, iff
M is singleton,

Proof. (a) By Lemma 1, h(D,) = D, for each 7 >1, thus
h(UM)cUM and M is backwarding with respect to h, .

(b) Now suppose M has at least two elements and consider
distinct elements H,K €M with H < K. There exists

7>1 with H =D, . Choose cardinal number 8 >0 with
7 =6+1. Consider arbitrary set A with card(A) =46 and
bg Ax{0,1} (e.g., b=(0,-1)). Let X =(Ax{0,1}) U{b}
and define f:X — X with f(a,0)=(al), f(a)=>b
and f(b)=b.Then

X~ fa0)ac Alu{(Axm) v

Sf
X
and card(——)=60+1=7. Thus (X,f)¢D,=H and
St
for each y >z we have (X, f)e D, = SSet, in particular
(X,f)eK\CcUM\C. On the hand
X

~

fk
Therefore, M
respect to h, .
Corollary 3. Each nonempty sub-class M  of
{SSet } U{E,:z>1}, is stationary (resp. forwarding,

other

{X}, hence h(X,f)=(X,f*)eD,cD,=C.

is not forwarding (resp. stationary) with

backwarding) with respect to h, .
Proof. Use Lemma 1.

3. Second operator: finite k times self-product
For k>2 h, : SSet — SSet

h, (X, f)z(xk! f), feyn Y ) = (F(yD - )
Lemma 4. Consider (X, f) eSSet :

consider with

1. we have:
) I
K X k <N, 3 is finite
card(=—) = (card(T)J « f
S ~i ) |=card(=) otherwise .
3

In particular for 7€{0:0=2v0=>N,}, (X,f)eD, iff
h,(X,f)eD,.
2. we have:

k

X Xk X
card(—) <card(—) <| card(—) | .
(m) (m ) [ (m ]

f f f
In particular for 7e€{0:0=2v0=N,}, (X, f)eE, iff
h,(X, f)eE,.
Proof. (1) For (X;,--, %), (Y1, ¥i ) € X we have:
(X %), (Y Yi)) €3y,

< (X)) = iy v)

< (F0q), F(x)) = (F(yn). - £ (¥ )

< (X Y1) (X, Vi) € 34

K k
X X
= | =

21,07, Z Z
(G NI S

i
Sy 3¢ I

SO

k
k
is bijective and Card(i(—) = card(;) .
3y, 3

(2) For (X, X ), (Y177, Vi) € R there exist n,m >1

with £ (%, %) = £ (Y, y)  thus  for  all

iefl....k} we have f"(x;)=f"(y,) and (X;,Y;) € R,

SO
k
X X
__> PR

@ead joa W
Ry, Ry Ry

XK X )
is onto, thus card(——) <| card(—) | , moreover

X XX

_) S_
Ry Ry,
2, (2en)
R Ry,

_ X XK
is one-to-one, hence Card(iR_) <card(—).
f fi

Theorem 5. Consider nonempty sub-class M of

{SSet }U{D, : 7 >1} we have:
1. The following statements are equivalent:

a. hz(UM) cUM,

b. one of the following conditions occurs:
M ({SSet }U{D, : 7 >2X,}) is nonvoid,

o MN{D, :7 <Ny} is infinite,

« M={D,},

¢. Dy, cUM or M={D,},
2. M is forwarding with respect to h, iff h,(UM) c UM,
3. M is backwarding (resp. stationary) with respect to h, iff
M c{SSet }U{D, : 7 2N8,}{D,}.
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Proof. (1) (@ = (b): Suppose h,(UM)cUM,
M ({SSet }u{D, 17 >RX,}) is  empty, and
MAN{D, :7 <Ny} is finite, then there exist

n<---<ng=p<N, with MZ{DanlSjSS}. So
UM=D,, if p>2 then consider X ={L...,p} and
f:X—>X with f(i)=i+1 for i<p and f(p)=p,

therefore

Sl:{{i}:lsis p-2'ufp-1 p},
f

Card(é) =p-1<pand (X, f)eD,.ByLemma4(l),
S

k
card(2—) = (p-1)* 22(p-1) > p

and (X, f)=(X*,f)eD,=UM which is in
contradiction with h,(UM)cUM. Hence n,=2 and
M={D,}.

(b) = (c): It’s clear by definition of D_s.

(c) = (a): Since for each transfinite cardinal number 7 we
=1 by Lemma 4(1) for each transfinite cardinal
number 7 we have hy(D,)cD,=D, also for each

2<n<¥, we have h,(D,)c Dy €

have

D, moreover
0

h,(D,) < D, which leads to the desired result.
(2) Use (1) and Lemma 4(1).
(3) First suppose M c{SSet}u{D, :7=>X,}u{D,},
then by item (1), h,(UM)cUM. Using Lemma 4(1), M is
backwarding and stationary with respect to h, .
Now suppose M is backwarding with respect to h, and
M ¢ {SSet }U{D, : 7 2N,}{D,}. Then there exists
finite p>2 with D,eM. Using the same method
described in the proof of “(a) = (b)” in item (1), there
exists (X, f)eD, with h,(X,f)eD,, which is a
contradiction and completes the proof.
Theorem 6. Consider nonempty
{SSet }U{E, : 7 >1} we have:
1. The following statements are equivalent:

a. hz(UM) cUM,

b. one of the following conditions occurs:
M ({SSet }U{E, :7>N,}) is nonvoid,
o MN{E, :7 <N} is infinite,
M={E,},

c. Ey, UM or M ={E,},
2. M is forwarding with respect to h, iff h,(UM) c UM,
3. M is backwarding (resp. stationary) with respect to h, iff
M c {SSet }U{E, : 7 2N }U{E,}.

sub-class M of

Proof. For finite p>2 consider X ={l,...,p—1} and

identity map f:X — X, then Card(ERL)z p-1 and
XX f

k
(X, f)eE,. However, card(;{(—)z(p—l)k >p and
fk

h,(X, f)¢E,. Use Lemma 4(2) and a similar method

described in the proof of Theorem 5 to complete the proof.
Note 7 (infinite self-product). For arbitrary infinite set T’

consider h:SSet —SSet with h(X,f)=(X",f.) with

fe((%)icr) =(F(Xi))ier .~ Then using
described in the finite case for each (X, f) €SSet we have

X r X card (I")
card(—) = (card(T)J
3 3

fr f

similar  method

and

X Xr X card (T")
card(—) < card(—) <| card(— .
(ER ) (ER ) ( (m )J

f fr f

Thus for any  nonempty  sub-class M of
{SSet}u{D, :z>1} with SSeteM, M is
forwarding with respect to h. Also for nonempty sub-class
M of {SSet}u{D, :z>2"""} M is stationary
with respect to h. Also for any nonempty sub-class M of
{SSet }U{E, :7>1} with SSet € M, M is forwarding
with respect to h. Also for nonempty sub-class M of
{SSet }U{E, :7>2%M} M is stationary with respect
to h.

4. Third operator: disjoint union

Consider arbitrary set I" with at least two elements and
hy:SSet —SSet  where  hy(X, f)=(XxT',fy) and

fry (% 7)=(f(x),7) (as a matter of fact one may consider

hy(X, f) "looks like" T' copies disjoint union of (X, f)).
Lemma 8. For each (X, f) eSSet we have:

card(

XXy _ card(r) card(2)
34, 3,
and

card( X x[

) =card(I) card(i) :
fry Ry

Proof. For each (X, f)eSSet and (x,i),(y,])e X xI
we have:

(CON) EREACR) ERNEY
and

(D). (. i) €%y, S Y)eR A=,
Thus:
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Xk, X
(Z,V)Hi)
Sty S
and
X xI' LXF
R R
£Z,7) LA

are bijective which lead to the desired result.

Theorem 9 (finite disjoint union). For finite T" (with at
least two elements) consider nonempty sub-class M of
{SSet}u{D,:7>1} and nonempty sub-class M’ of

{SSet }U{E, : 7 >1}, we have:
1. The following statements are equivalent:

a. hy(UM)cUM,

b. one of the following conditions occurs:

M ({SSet }U{D, : 7 >X,}) is nonvoid,

M N{D, : 7 <Ny} is infinite,
. Dy, cUM,
2. M is forwarding with respect to h, iff h,(UM) c UM,
3. M is backwarding (resp. stationary) with respect to h, iff
M c{SSet }U{D, : 7 2 N,},
4. The following statements are equivalent:

a. h,(UM') cUM’,

b. one of the following conditions occurs:
M' ({SSet }U{E, : 7 >N,}) is nonvoid,

o M'n{E, :7 <Ny} is infinite,

C. ENO cUM’,
5. M’ is forwarding with respect to h; iff hy(UM’) cUM’,
6. M’ is backwarding (resp. stationary) with respect to h,
iff M c{SSet }U{E, :7>N,}.
Proof. For finitt p>1 consider X ={l,...,p—-1} and

o

identity map f : X — X as in the proof of Theorem 6, then
X=X

card(é) :card(mi): p-1 and (X,f)eE,nD,.

3¢ f

However
card( i ><Iﬂ) = card( X x 1ﬁ) =(p-Dcard(I)>p
~ firy

and hy(X,f)eD, UE,. Use Lemma 8 and a similar

method described in Theorems 5 and 6 to complete the
proof.
Note 10 (infinite disjoint union). For infinite T" and

nonempty sub-class M of {SSet}uU{D._:z>1} with
SSet e M, M is forwarding with respect to h,. Also for
nonempty sub-class M of {SSet}U{D, :z>card(I')},

M s stationary with respect to h,. Also for any nonempty

sub-class M of {SSet}U{E, :z>1} with SSet € M,
M is forwarding with respect to h,. Also for nonempty sub-
class M of {SSet }U{E,:7>card(I')}, M is stationary
with respect to h;.

5. Fourth operator: induced map on power set

For arbitrary set X and cardinal numbers 4,6

let
P (X)={Ac X :0 < card(A) < }
P<*(X) ={Ac X :card(A) < },
and h, :SSet —SSet with h,(X, f)=(P(X),P(f))eSSet
where P(f)(A)=f(A)={f(X):xeA}) (for AcX)
he?(X, £)=(P<(X),P’(f))eSSet ~ as the
P</(X), ie.

also

restriction of the above self-map to
<9 _

P=(f)= P(f)|P<3(X).

Lemma 11. For 1<k <X, we have:

<k+1 k-1
card(é) < card(li—(x)) < [card(é)} +1.
3 3

f P<k+1(f)

X
In particular for infinite — we have
S
X P<k+l X
card(—) = card({y—()) .
<3 f P<k+l( f )
Proof. For each nonempty ABeP*?(X) (ie.

A BeP (X)) there exist Xg,...,Xy,Yir-. Vi € X
(may be not distinct) with A={X;,...,. X, 1, B={y;,---, Y« }-
Now for (X, f)eSSet and nonempty A BeP™*?(X)
with (A/B) ESP“”(f)
A={x,.... X B ={y;,..., ¥ }, we have

P<k+1( f )(A) — P<k+1( f )(B)
thus {f (X)),...., F(X)F={f(y.),-.., T (y)}, so for each
ie{l,... .k} there  exist s;,t;e{l....k}  with
f(x)="f(y,) and f(y;)=f(x,). Without any loss of
generality we may assume f(x,)= f(y;) and s, =t, =1.
Thus
(FOx), - T T X, ) £(X )

=(F(yg ) Flys ) F(y2) F(y))
using the same notations as in the Second study we have

Farca (Xps X X v X ) = Faa (Y oo Yoo Yaur i Vi)

and (g, Xy, X, oo Xy s (Vs Vs Yoo Vi) € S,
moreover, clearly we have
DX Xy e Xy b= {6 %

and  {Ys, Vs Yo Vi =0V it

following map is onto

and

Hence the
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<k+1
:card{zl,...,ZZk_l}sk} P (X)
3

(z )Kigzk-iH{leu

~ak-1

ka—l

{(Zi )icicok-1

P<k+1( f )
Zyka}

3
P<k+1( f)

P<k+1 p<k+lyx
(by ( ) we mean

\SP<k+1(f)
class of empty set).
Therefore (use the Section 3 too):

— except the equivalence
\sP<k+1( f)

<k+1( ) X 21 ( JZk_l
card(-—=>——=) <card(—) = card(—) .
P<k+1(f) ~ f2k = S
hence:
<k+l( ) 2k—1 ( X jZK_l
card(——- )<card( )+1=| card(—) +1
P<k+1(f) ~ sz Sy
Moreover:
<k+1
BN AL
3¢ \SP<k+1(f)
2.,

3 3
f P<k+1( f)

is one-to-one, thus

card(

P<k+1( ) 2k-1
)<card(———) < card( ) +1.
f SP<k+1(f) f

Corollary 12. For 1<k <, we have:

card(

<k+1 2k-1
L) < card(P—()) < (card( )J +1.
f P<k+1(f) f

Proof. Use a similar method described in Lemma 11.

Note 13. For 1<k <N,, finitt I' (with at least two

elements) nonempty sub-class M of {SSet } U{D, : 7 >1}

and nonempty sub-class M’ of {SSet}U{E. 7 >1}, we

have:

e h(UM)cUM iff h;**(UM) c UM,

e M is forwarding (respectively backwarding, stationary)
with respect to hj“l iff it is forwarding (respectively
backwarding, stationary) with respect to h,,

o hy(UM') UM’ iff h;* (UM") cUM',

e« M
with respect to h;** iff it is forwarding (respectively

is forwarding (respectively backwarding, stationary)

backwarding, stationary) with respect to h,.
Proof. Use Theorem 9.
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