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Abstract: In the following chain we study some backwarding, 
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some well-known operators like composition, finite product and 
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1. Introduction 

Our main aim in this text is to study the concept of 

forwarding (backwarding, stationary) chain in sub-categories 

of Self-maps in category Set. 

In the category C  suppose M  is a nonempty chain of sub-

categories of C  (under the inclusion relation, so elements of 

M  are sub-categories of C  and for each M,   we 

have    or    (since M  is a chain)). Also 

suppose MM:  h  is a map. We say M  is [1]: 

 a forwarding chain with respect to h  if for all M  we 

have  \M)\M(  h  (i.e.,  )\M(h  is 

empty), 

 a full-forwarding chain with respect to h  if it is 

forwarding and for all distinct M,,   with 

   there exists  \X  with 

 \)( Xh ,  

 a backwarding chain with respect to h  if for all M  

we have  )(h , 

 a full-backwarding chain with respect to h  if it is 

backwarding and for all distinct M,,   with 

   there exists  \X  with 

 \)( Xh , 

 a stationary chain with respect to h  if it is both 

forwarding and backwarding chain with respect to h . 

Let’s recall that for equivalence relation E  on X  and 

Xx  we have }),(:{: EyxXy
E

x
  and quotient 

space 








 Xz
E

z

E

X
:: . Also 0  denotes the least 

infinite cardinal number, i.e., 0)(card N  (where N  is 

the collection of all natural numbers). 

For self-map XXf :  consider two equivalence 

relations f  and f  on X  with (see e.g. [2]): 

)()(),( yfxfyx f  , 

))()(1,(),( yfxfmnyx mn
f  . 

In this text for cardinal number 1  suppose: 

 : {: XXD
f

 cardinality of the quotient space 
f

X


 is 

less than } , 

 : {: XXE
f

 cardinality of the quotient space 
f

X


 is 

less than } . 

We denote the sub-category of Set consisting of self-maps by 

SSet and will denote self-map XXf :  by ),( fX . 

2. First operator: k times self-composition 

In this section consider 2k  and SSetSSet:1 h  with 

),(),(1
kfXfXh   (where fff k   ( k  times)). 

Lemma 1. For SSet ),( fX  we have kff   and 

kff  , thus )(card)(card
ff

XX

k 



  and 

)(card)(card
ff

XX

k 



. 

Proof. For each SSet ),( fX  and fyx ),(  we have 

)()( yfxf   thus )()( yfxf kk  and kf
yx ),( , 

therefore kff   and 

kff

k

zz
ff

XX










 

is onto, hence )(card)(card
ff

XX

k 



. Moreover, 

Xyx ,  we have: 

))()((1,),( yfxfmnyx nm
f   
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     ))()((1, yfxfmn nkmk   

     ))()()()((1, yfxfmn nkmk   

     kf
yx  ),( . 

Which leads to kff   and completes the proof. 

Theorem 2. Consider nonempty sub-class M  of 

}1:{}SSet  {  D :  

a. M  is backwarding with respect to 1h . 

b. M  is forwarding (resp. stationary) with respect to 1h  iff 

M  is singleton, 

Proof. (a) By Lemma 1,  DDh )(1  for each 1 , thus 

M)M(1  h  and M  is backwarding with respect to 1h .  

(b) Now suppose M  has at least two elements and consider 

distinct elements M, KH  with KH  . There exists 

1  with DH  . Choose cardinal number 0  with 

1 . Consider arbitrary set A  with )(card A  and 

}1,0{Ab  (e.g., )1,0( b ). Let }{})1,0{( bAX   

and define XXf :  with )1,()0,( aaf  , baf )1,(  

and bbf )( . Then 

  }}{})1{{(:)}0,{( bAAaa
X

f




 

and  


1)(card
f

X
. Thus HDfX  ),(  and 

for each    we have SSet ),(  DfX , in particular 

CCKfX \M\),(  . On the other hand 

}{X
X

kf




, hence CDDfXfXh k  21 ),(),( . 

Therefore, M  is not forwarding (resp. stationary) with 

respect to 1h . 

Corollary 3. Each nonempty sub-class M  of 

}1:{}SSet  {  E , is stationary (resp. forwarding, 

backwarding) with respect to 1h . 

Proof. Use Lemma 1. 

3. Second operator: finite k times self-product 

For 2k  consider SSetSSet:2 h  with 

),(),(2 k
k fXfXh  ,  ))(,),((),,( 11 kkk yfyfyyf   . 

Lemma 4. Consider SSet ),( fX :  

1. we have:  




































  . otherwise)(card

, finite is 

)(card)(card

0

f

f

k

ff

k

X

X

XX

k

 

In particular for }2:{ 0  , DfX  ),(   iff 

DfXh  ),(2  .  

2. we have: 

k

ff

k

f

XXX

k






















)(card)(card)(card . 

In particular for }2:{ 0  , EfX  ),(   iff 

EfXh  ),(2  .  

Proof. (1) For 
k

kk Xyyxx ),,(),,,( 11   we have: 

kfkk yyxx )),,(),,,(( 11   

  ),,(),,( 11 kkkk yyfxxf    

  ))(,),(())(,),(( 11 kk yfyfxfxf    

  fkk yxyx  ),(,),,( 11   

so  

),,(
),,( 11

f

k

fkf

k

k

zzzz

k

ff

k XX

























 

is bijective and 

k

ff

k XX

k



















)(card)(card . 

(2) For
kfkk yyxx )),,(),,,(( 11   there exist 1, mn  

with ),,(),,( 11 k
m

kk
n

k yyfxxf    thus for all 

},...,1{ ki  we have )()( i
m

i
n yfxf   and fii yx ),(  

so 

),,(
),,( 11

f

k

fkf

k

k

zzzz

k

ff

k XX

























 

is onto, thus 

k

ff

k XX

k



















)(card)(card , moreover 

kff

k

zzz
f

k

f

XX







),,( 



 

is one-to-one, hence )(card)(card

kf

k

f

XX





.  

Theorem 5. Consider nonempty sub-class M  of 

}1:{}SSet  {  D  we have: 

1. The following statements are equivalent:  

a. M)M(2  h , 

b. one of the following conditions occurs:  

 }):{}SSet  ({M 0 D  is nonvoid, 

 }:{M 0 D  is infinite, 

 }{M 2D , 

c. M
0

D  or }{M 2D , 

2. M  is forwarding with respect to 2h  iff M)M(2  h , 

3. M  is backwarding (resp. stationary) with respect to 2h  iff 

}{}:{}SSet  {M 20 DD   . 
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Proof. (1) (a)   (b): Suppose M)M(2  h , 

}):{}SSet  ({M 0 D  is empty, and 

}:{M 0 D  is finite, then there exist 

01  pnn s  with }1:{M sjD
jn  .  So 

pDM , if 2p  then consider },,1{ pX   and 

XXf :  with 1)(  iif  for pi   and ppf )( , 

therefore 

   },1{21:}{ pppii
X

f




, 

pp
X

f




1)(card  and pDfX ),( . By Lemma 4(1),  

ppp
X k

f

k

k




)1(2)1()(card  

and M),(),(2  pk
k DfXfXh  which is in 

contradiction with M)M(2  h . Hence 2sn  and 

}{M 2D .  

(b)   (c): It’s clear by definition of D s. 

(c)   (a): Since for each transfinite cardinal number   we 

have   k
 by Lemma 4(1) for each transfinite cardinal 

number   we have  DDDh k )(2  also for each 

02  n  we have 
01)1(2 )( 

 DDDh knn  moreover 

222 )( DDh   which leads to the desired result. 

(2) Use (1) and Lemma 4(1). 

(3) First suppose }{}:{}SSet  {M 20 DD   , 

then by item (1), M)M(2  h . Using Lemma 4(1), M  is 

backwarding and stationary with respect to 2h . 

Now suppose M  is backwarding with respect to 2h  and 

}{}:{}SSet  {M 20 DD   . Then there exists 

finite 2p  with M pD . Using the same method 

described in the proof of “(a)   (b)” in item (1), there 

exists pDfX ),(  with pDfXh ),(2 , which is a 

contradiction and completes the proof. 

Theorem 6. Consider nonempty sub-class M  of 

}1:{}SSet  {  E  we have: 

1. The following statements are equivalent:  

a. M)M(2  h , 

b. one of the following conditions occurs:  

 }):{}SSet  ({M 0 E  is nonvoid, 

 }:{M 0 E  is infinite, 

 }{M 2E , 

c. M
0

E  or }{M 2E , 

2. M  is forwarding with respect to 2h  iff M)M(2  h , 

3. M  is backwarding (resp. stationary) with respect to 2h  iff 

}{}:{}SSet  {M 20 EE   . 

Proof. For finite 2p  consider }1,,1{  pX   and 

identity map 
xx
XXf


: , then 1)(card 


p

X

f

 and 

pEfX ),( . However, pp
X k

f

k

k




)1()(card  and 

pEfXh ),(2 . Use Lemma 4(2) and a similar method 

described in the proof of Theorem 5 to complete the proof. 

Note 7 (infinite self-product). For arbitrary infinite set   

consider SSetSSet: h  with ),(),( 
 fXfXh  with 

  iiii xfxf ))(())(( . Then using similar method 

described in the finite case for each SSet ),( fX  we have 

)(card

)(card)(card






















 ff

XX
 

 and  
)(card

)(card)(card)(card

























 fff

XXX
. 

Thus for any nonempty sub-class M  of 

}1:{}SSet  {  D  with MSSet , M  is 

forwarding with respect to h . Also for nonempty sub-class 

M  of }2:{}SSet  { )(card  D , M  is stationary 

with respect to h . Also for any nonempty sub-class M  of 

}1:{}SSet  {  E  with MSSet , M  is forwarding 

with respect to h . Also for nonempty sub-class M  of 

}2:{}SSet  { )(card  E , M  is stationary with respect 

to h . 

4. Third operator: disjoint union 

Consider arbitrary set   with at least two elements and 

SSetSSet:3 h  where ),(),( )(3  fXfXh  and 

)),((),()(  xfxf   (as a matter of fact one may consider 

),(3 fXh  "looks like"   copies disjoint union of ),( fX ).  

Lemma 8. For each SSet ),( fX  we have: 

)(card )(card)(card

)( ff

XX










 

and 

)(card )(card)(card

)( ff

XX










. 

Proof. For each SSet ),( fX  and Xjyix ),(),,(  

we have:  

jiyxjyix ff 


),()),(),,((
)(

 

and 

jiyxjyix ff 


),()),(),,((
)(

. 

Thus: 
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),(
),(

)(

)(




ff

zz

ff

XX
















 

and  

),(
),(

)(

)(




ff

zz

ff

XX
















 

are bijective which lead to the desired result. 

Theorem 9 (finite disjoint union). For finite   (with at 

least two elements) consider nonempty sub-class M  of 

}1:{}SSet  {  D  and nonempty sub-class M  of 

}1:{}SSet  {  E , we have: 

1. The following statements are equivalent:  

a. M)M(3  h , 

b. one of the following conditions occurs:  

 }):{}SSet  ({M 0 D  is nonvoid, 

 }:{M 0 D  is infinite, 

c. M
0

D , 

2. M  is forwarding with respect to 3h  iff M)M(3  h , 

3. M  is backwarding (resp. stationary) with respect to 3h  iff 

}:{}SSet  {M 0 D , 

4. The following statements are equivalent:  

a. M)M(3
 h , 

b. one of the following conditions occurs:  

 }):{}SSet  ({M 0 E  is nonvoid, 

 }:{M 0 E  is infinite, 

c. M
0

 E , 

5. M  is forwarding with respect to 3h  iff M)M(3
 h , 

6. M  is backwarding (resp. stationary) with respect to 3h  

iff }:{}SSet  {M 0 E . 

Proof. For finite 1p  consider }1,,1{  pX   and 

identity map 
xx
XXf


:  as in the proof of Theorem 6, then 

1)(card)(card 





p
XX

ff

 and pp DEfX ),( . 

However 

pp
XX

ff













)(card )1()(card)(card

)()(

 

and pp EDfXh ),(3 . Use Lemma 8 and a similar 

method described in Theorems 5 and 6 to complete the 

proof. 

Note 10 (infinite disjoint union). For infinite   and 

nonempty sub-class M  of }1:{}SSet  {  D  with 

MSSet , M  is forwarding with respect to 3h . Also for 

nonempty sub-class M  of )}(card:{}SSet  {  D , 

M  is stationary with respect to 3h . Also for any nonempty 

sub-class M  of }1:{}SSet  {  E  with MSSet , 

M  is forwarding with respect to 3h . Also for nonempty sub-

class M  of )}(card:{}SSet  {  E , M  is stationary 

with respect to 3h . 

5. Fourth operator: induced map on power set 

For arbitrary set X  and cardinal numbers ,  

 let  

})(card:{)(P 
 
 AXAX  

})(card:{)(P   AXAX , 

and SSetSSet:4 h  with SSet ))(P),(P(),(4  fXfXh  

where }):)({)(())((P AxxfAfAf   (for XA ) 

also SSet ))(P),(P(),(
4

  fXfXh 
 as the 

restriction of the above self-map to )(P X
, i.e. 

)(P
|)(P)(P

X
ff 




. 

Lemma 11. For 01  k  we have: 

1)(card)
)(P

(card)(card

12

)(P

1

1





























k

ff

k

f

XXX

k

. 

In particular for infinite 
f

X


 we have 

)
)(P

(card)(card

)(P

1

1 f

k

f k

XX








. 

Proof. For each nonempty )(P, 1 XBA k  (i.e. 

)(P, 1
0 XBA k

 ) there exist Xyyxx kk ,,,,, 11   

(may be not distinct) with },,{},,,{ 11 kk yyBxxA   . 

Now for SSet ),( fX  and nonempty )(P, 1 XBA k  

with 
)(P 1),(

fkBA   and 

},,{},,,{ 11 kk yyBxxA   , we have 

))((P))((P 11 BfAf kk    

thus )}(,),({)}(,),({ 11 kk yfyfxfxf   , so for each 

},,1{ ki   there exist },,1{, kts ii   with 

)()(
isi yfxf   and )()(

iti xfyf  . Without any loss of 

generality we may assume )()( 11 yfxf   and 111  ts . 

Thus 

 
))(,),(),(,),((

))(,),(),(,),((

2

1

1

2

kss

ttk

yfyfyfyf

xfxfxfxf

k

k






  

using the same notations as in the Second study we have 

),,,,,(),,,,,( 212112 12 ksskttkk yyyyfxxxxf
kk

    

and
1212

)),,,,,(),,,,,,(( 21 


kkk fkssttk yyyyxxxx    

moreover, clearly we have  

},,{},,,,,{ 11 2 kttk xxxxxx
k

   

and },,{},,,,,{ 121 kkss yyyyyy
k

  . Hence the 

following map is onto 
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)(1P

121

12

121

1
12

},,{)(
)(P

1
0

121
121 )(P

},,{card:
)(

fk

k

kf

kii

k
k

zzz
f

k

k

f

kii X
kzz

z









































  

(by 

)(P

1
0

1

)(P

f

k

k

X




  we mean 

)(P

1

1

)(P

f

k

k

X





 except the equivalence 

class of empty set). 

Therefore (use the Section 3 too): 
12

12

)(P

1
0 )(card)(card)

)(P
(card

12
1































k

ff

k

f

k XXX

k
k

. 

hence: 

1)(card1)(card)
)(P

(card

12
12

)(P

1

12
1






























k

ff

k

f

k
XXX

k
k

 

Moreover: 

)(1P

1

}{
)(P

1 )(P

fkf

k

zz
f

k

f

XX
















 

is one-to-one, thus  

1)(card)
)(P

(card)(card

12

)(P

1

1





























k

ff

k

f

XXX

k

. 

Corollary 12. For 01  k  we have: 

1)(card)
)(P

(card)(card

12

)(P

1

1





























k

ff

k

f

XXX

k

. 

Proof. Use a similar method described in Lemma 11. 

Note 13. For 01  k , finite   (with at least two 

elements) nonempty sub-class M  of }1:{}SSet  {  D  

and nonempty sub-class M  of }1:{}SSet  {  E , we 

have: 

 M)M(3  h  iff M)M(1
4  kh , 

 M  is forwarding (respectively backwarding, stationary) 

with respect to 
1

4
kh  iff it is forwarding (respectively 

backwarding, stationary) with respect to 3h , 

 M)M(3
 h  iff M)M(1

4
 kh , 

 M  is forwarding (respectively backwarding, stationary) 

with respect to 
1

4
kh  iff it is forwarding (respectively 

backwarding, stationary) with respect to 3h . 

Proof. Use Theorem 9. 
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