Study of a forwarding chain with respect to operators in the Self-maps sub-category

Fatemah Ayatollah Zadeh Shirazi¹ and Maryam Haghjooyan^{2*}

¹Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran ²Faculty of Mathematics, Tarbiat Modares University, Tehran, Iran

¹fatemah@khayam.ut.ac.ir and ²haghjooyanmaryam@gmail.com ^{*}Corresponding author

Abstract: In the following chain we study some backwarding, forwarding and stationary chains in the category Set with respect to some well-known operators like composition, finite product and disjoint union.

Keywords: backwarding chain, forwarding chain, stationary chain.

1. Introduction

Our main aim in this text is to study the concept of forwarding (backwarding, stationary) chain in sub-categories of Self-maps in category Set.

In the category C suppose M is a nonempty chain of subcategories of C (under the inclusion relation, so elements of M are sub-categories of C and for each $\alpha, \beta \in M$ we have $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$ (since M is a chain)). Also suppose $h: \bigcup M \to \bigcup M$ is a map. We say M is [1]:

- a forwarding chain with respect to h if for all $\kappa \in M$ we have $h(\bigcup M \setminus \kappa) \subseteq \bigcup M \setminus \kappa$ (i.e., $h(\bigcup M \setminus \kappa) \cap \kappa$ is empty),
- a full-forwarding chain with respect to h if it is forwarding and for all distinct $\kappa, \lambda, \mu \in M$ with $X \in \lambda \setminus \kappa$ $\kappa \subseteq \lambda \subseteq \mu$ there exists with $h(X) \in \mu \setminus \lambda$,
- a backwarding chain with respect to h if for all $\kappa \in \mathbf{M}$ we have $h(\kappa) \subseteq \kappa$,
- a full-backwarding chain with respect to h if it is backwarding and for all distinct $\kappa, \lambda, \mu \in M$ with $\kappa \subseteq \lambda \subseteq \mu$ $X \in \mu \setminus \lambda$ there exists with $h(X) \in \lambda \setminus \kappa$,
- a stationary chain with respect to h if it is both forwarding and backwarding chain with respect to h.

Let's recall that for equivalence relation E on X and

$$x \in X$$
 we have $\frac{x}{E} := \{y \in X : (x, y) \in E\}$ and quotient

space $\frac{X}{E} \coloneqq \left\{ \frac{z}{E} \colon z \in X \right\}$. Also \aleph_0 denotes the least is onto, hence $\operatorname{card}(\frac{X}{\mathfrak{I}_{f^k}}) \leq \operatorname{card}(\frac{X}{\mathfrak{I}_f})$. Moreover,

infinite cardinal number, i.e., $card(N) = \aleph_0$ (where N is the collection of all natural numbers).

For self-map $f: X \to X$ consider two equivalence

relations \mathfrak{T}_f and \mathfrak{R}_f on X with (see e.g. [2]):

$$(x, y) \in \mathfrak{I}_f \Leftrightarrow f(x) = f(y),$$

$$(x, y) \in \mathfrak{R}_f \Leftrightarrow (\exists n, m \ge 1 \ f^n(x) = f^m(y)).$$

In this text for cardinal number $\tau > 1$ suppose:

• $D_{\tau} := \{X \xrightarrow{J} X : \text{cardinality of the quotient space } \frac{X}{\mathfrak{I}_{\varepsilon}} \text{ is}$

less than τ },

•
$$E_{\tau} := \{X \xrightarrow{f} X : \text{cardinality of the quotient space } \frac{X}{\Re_f} \text{ is}$$

less than τ }.

We denote the sub-category of Set consisting of self-maps by SSet and will denote self-map $f: X \to X$ by (X, f).

2. First operator: k times self-composition

In this section consider $k \ge 2$ and $h_1: SSet \rightarrow SSet$ with $h_1(X, f) = (X, f^k)$ (where $f^k = f \circ \cdots \circ f$ (k times)). Lemma 1. For $(X, f) \in SSet$ we have $\mathfrak{I}_f \subseteq \mathfrak{I}_{f^k}$ and

$$\mathfrak{R}_{f} = \mathfrak{R}_{f^{k}}, \quad \text{thus} \quad \operatorname{card}(\frac{X}{\mathfrak{T}_{f^{k}}}) \leq \operatorname{card}(\frac{X}{\mathfrak{T}_{f}}) \quad \text{and}$$

$$\operatorname{card}(\frac{X}{\mathfrak{R}_{f^{k}}}) = \operatorname{card}(\frac{X}{\mathfrak{R}_{f}}).$$

Proof. For each $(X, f) \in SSet$ and $(x, y) \in \mathfrak{I}_f$ we have f(x) = f(y) thus $f^{k}(x) = f^{k}(y)$ and $(x, y) \in \mathfrak{I}_{f^{k}}$, therefore $\mathfrak{I}_f \subseteq \mathfrak{I}_{f^k}$ and

$$\frac{X}{\mathfrak{I}_{f}} \to \frac{X}{\mathfrak{I}_{f^{k}}}$$
$$\xrightarrow{z \atop \mathfrak{I}_{f} \mapsto \mathfrak{I}_{f^{k}}}^{z}$$

 $x, y \in X$ we have:

$$(x, y) \in \mathfrak{R}_f \Leftrightarrow \exists n, m \ge 1 (f^m(x) = f^n(y))$$

$$\Leftrightarrow \exists n, m \ge 1 (f^{mk}(x) = f^{nk}(y))$$
$$\Leftrightarrow \exists n, m \ge 1 ((f^k)^m(x) = (f^k)^n(y))$$
$$\Leftrightarrow (x, y) \in \mathfrak{R}_{f^k}.$$

Which leads to $\mathfrak{R}_f = \mathfrak{R}_{f^k}$ and completes the proof.

Theorem 2. Consider nonempty sub-class M of $\{ \text{SSet } \} \cup \{ D_{\tau} : \tau > 1 \} :$

a. M is backwarding with respect to h_1 .

b. M is forwarding (resp. stationary) with respect to h_1 iff M is singleton,

Proof. (a) By Lemma 1, $h_1(D_{\tau}) \subseteq D_{\tau}$ for each $\tau > 1$, thus $h_1(\bigcup M) \subseteq \bigcup M$ and M is backwarding with respect to h_1 .

(b) Now suppose M has at least two elements and consider distinct elements $H, K \in M$ with $H \subset K$. There exists $\tau > 1$ with $H = D_{\tau}$. Choose cardinal number $\theta > 0$ with $\tau = \theta + 1$. Consider arbitrary set A with card(A) = θ and $b \notin A \times \{0,1\}$ (e.g., b = (0,-1)). Let $X = (A \times \{0,1\}) \cup \{b\}$ and define $f: X \to X$ with f(a,0) = (a,1), f(a,1) = band f(b) = b. Then

$$\frac{X}{\Im_f} = \{\{(a,0)\} : a \in A\} \cup \{(A \times \{1\}) \cup \{b\}\}$$

and $\operatorname{card}(\frac{X}{\mathfrak{I}_f}) = \theta + 1 = \tau$. Thus $(X, f) \notin D_\tau = H$ and

for each $\psi > \tau$ we have $(X, f) \in D_{\psi} \subset SSet$, in particular $(X, f) \in K \setminus C \subseteq \bigcup M \setminus C$. On the other hand $\frac{X}{\mathfrak{I}_{f^k}} = \{X\}$, hence $h_1(X, f) = (X, f^k) \in D_2 \subseteq D_{\tau} = C$.

Therefore, M is not forwarding (resp. stationary) with respect to h_1 .

Corollary 3. Each nonempty sub-class M of $\{ \text{SSet } \} \cup \{ E_{\tau} : \tau > 1 \}$, is stationary (resp. forwarding, backwarding) with respect to h_1 . *Proof.* Use Lemma 1.

3. Second operator: finite *k* times self-product

For $k \ge 2$ consider $h_2 : SSet \to SSet$ with $h_2(X, f) = (X^k, f_k), f_k(y_1, \dots, y_k) = (f(y_1), \dots, f(y_k))$. **Lemma 4.** Consider $(X, f) \in SSet$: 1. we have:

$$\operatorname{card}(\frac{X^{k}}{\mathfrak{I}_{f_{k}}}) = \left(\operatorname{card}(\frac{X}{\mathfrak{I}_{f}})\right)^{k} \begin{cases} < \aleph_{0} & \frac{X}{\mathfrak{I}_{f}} \text{ is finite }, \\ = \operatorname{card}(\frac{X}{\mathfrak{I}_{f}}) & \text{otherwise }. \end{cases}$$

In particular for $\tau \in \{\theta : \theta = 2 \lor \theta \ge \aleph_0\}$, $(X, f) \in D_{\tau}$ iff $h_2(X, f) \in D_{\tau}$. 2. we have:

$$\operatorname{card}(\frac{X}{\mathfrak{R}_{f}}) \leq \operatorname{card}(\frac{X^{k}}{\mathfrak{R}_{f_{k}}}) \leq \left(\operatorname{card}(\frac{X}{\mathfrak{R}_{f}})\right)^{k}.$$

In particular for $\tau \in \{\theta : \theta = 2 \lor \theta \ge \aleph_0\}$, $(X, f) \in E_{\tau}$ iff $h_2(X, f) \in E_{\tau}$.

Proof. (1) For
$$(x_1, \dots, x_k), (y_1, \dots, y_k) \in X^k$$
 we have:
 $((x_1, \dots, x_k), (y_1, \dots, y_k)) \in \mathfrak{I}_{f_k}$
 $\Leftrightarrow f_k(x_1, \dots, x_k) = f_k(y_1, \dots, y_k)$
 $\Leftrightarrow (f(x_1), \dots, f(x_k)) = (f(y_1), \dots, f(y_k))$
 $\Leftrightarrow (x_1, y_1), \dots, (x_k, y_k) \in \mathfrak{I}_f$

so

$$\frac{X^{k}}{\Im_{f_{k}}} \rightarrow \left(\frac{X}{\Im_{f}}\right)^{k}$$

$$\xrightarrow{(z_{1}, \dots, z_{k})}{\Im_{f_{k}}} \mapsto \left(\frac{z_{1}}{\Im_{f}}, \dots, \frac{z_{k}}{\Im_{f}}\right)$$
is bijective and $\operatorname{card}\left(\frac{X^{k}}{\Im_{f}}\right) = \left(\operatorname{card}\left(\frac{X}{\Im_{f}}\right)\right)$

(2) For $((x_1, \dots, x_k), (y_1, \dots, y_k)) \in \Re_{f_k}$ there exist $n, m \ge 1$ with $f_k^n(x_1, \dots, x_k) = f_k^m(y_1, \dots, y_k)$ thus for all $i \in \{1, \dots, k\}$ we have $f^n(x_i) = f^m(y_i)$ and $(x_i, y_i) \in \Re_f$ so

$$\frac{X^{k}}{\Re_{f_{k}}} \rightarrow \left(\frac{X}{\Re_{f}}\right)^{k}$$

$$\xrightarrow{(z_{1}, \dots, z_{k})}{\Re_{f_{k}}} \rightarrow \left(\frac{z_{1}}{\Re_{f}}, \dots, \frac{z_{k}}{\Re_{f}}\right)$$
is onto, thus $\operatorname{card}\left(\frac{X^{k}}{\Re_{f_{k}}}\right) \leq \left(\operatorname{card}\left(\frac{X}{\Re_{f}}\right)\right)^{k}$, moreover
$$\frac{X}{\Re_{f}} \rightarrow \frac{X^{k}}{\Re_{f_{k}}}$$

$$\xrightarrow{z_{1}}{\Re_{f}} \rightarrow \frac{X^{k}}{\Re_{f_{k}}}$$

$$X \qquad X^{k}$$

is one-to-one, hence $\operatorname{card}(\frac{X}{\mathfrak{R}_f}) \leq \operatorname{card}(\frac{X^k}{\mathfrak{R}_{f_k}})$.

Theorem 5. Consider nonempty sub-class M of $\{SSet\} \cup \{D_{\tau} : \tau > 1\}$ we have:

1. The following statements are equivalent:

a. $h_2(\bigcup M) \subseteq \bigcup M$,

- b. one of the following conditions occurs:
- $\mathbf{M} \cap (\{ \text{SSet} \} \cup \{ D_{\tau} : \tau \ge \aleph_0 \})$ is nonvoid,
- $\mathbf{M} \cap \{D_{\tau} : \tau < \aleph_0\}$ is infinite,
- $M = \{D_2\},\$
- c. $D_{\aleph_0} \subseteq \bigcup M$ or $M = \{D_2\}$,
- 2. M is forwarding with respect to h_2 iff $h_2(\bigcup M) \subseteq \bigcup M$,
- 3. M is backwarding (resp. stationary) with respect to h_2 iff $M \subseteq \{SSet\} \cup \{D_\tau : \tau \ge \aleph_0\} \cup \{D_2\}.$

Proof. (1) (a) \Rightarrow (b): Suppose $h_2(\bigcup M) \subseteq \bigcup M$, $M \cap \{\{ SSet \} \cup \{D_\tau : \tau \ge \aleph_0\} \}$ is empty, and $M \cap \{D_\tau : \tau < \aleph_0\}$ is finite, then there exist $n_1 < \cdots < n_s = p < \aleph_0$ with $M = \{D_{n_j} : 1 \le j \le s\}$. So $\bigcup M = D_p$, if p > 2 then consider $X = \{1, \ldots, p\}$ and $f : X \to X$ with f(i) = i + 1 for i < p and f(p) = p, therefore

$$\frac{X}{\mathfrak{F}_{f}} = \{\{i\} : 1 \le i \le p-2\} \cup \{\{p-1, p\}\},\$$

 $\operatorname{card}(\frac{X}{\mathfrak{I}_{f}}) = p - 1 . By Lemma 4(1),$ $<math>\operatorname{card}(\frac{X^{k}}{\mathfrak{I}_{f}}) = (p - 1)^{k} \ge 2(p - 1) > p$

and
$$h_2(X, f) = (X^k, f_k) \notin D_p = \bigcup M$$
 which is in
contradiction with $h_2(\bigcup M) \subseteq \bigcup M$. Hence $n_s = 2$ and
 $M = \{D_2\}$.

(b) \Rightarrow (c): It's clear by definition of D_{τ} s.

(c) \Rightarrow (a): Since for each transfinite cardinal number τ we have $\tau^k = \tau$ by Lemma 4(1) for each transfinite cardinal number τ we have $h_2(D_{\tau}) \subseteq D_{\tau^k} = D_{\tau}$ also for each $2 < n < \aleph_0$ we have $h_2(D_n) \subseteq D_{(n-1)^k+1} \subseteq D_{\aleph_0}$ moreover $h_2(D_2) \subseteq D_2$ which leads to the desired result. (2) Use (1) and Lemma 4(1).

(3) First suppose $M \subseteq \{SSet\} \cup \{D_{\tau} : \tau \ge \aleph_0\} \cup \{D_2\}$, then by item (1), $h_2(\bigcup M) \subseteq \bigcup M$. Using Lemma 4(1), M is backwarding and stationary with respect to h_2 .

Now suppose M is backwarding with respect to h_2 and $M \not\subseteq \{SSet\} \cup \{D_\tau : \tau \ge \aleph_0\} \cup \{D_2\}$. Then there exists finite p > 2 with $D_p \in M$. Using the same method described in the proof of "(a) \Rightarrow (b)" in item (1), there exists $(X, f) \in D_p$ with $h_2(X, f) \notin D_p$, which is a contradiction and completes the proof.

Theorem 6. Consider nonempty sub-class M of $\{ SSet \} \cup \{ E_{\tau} : \tau > 1 \}$ we have:

1. The following statements are equivalent:

a.
$$h_2(\bigcup M) \subseteq \bigcup M$$

- b. one of the following conditions occurs:
- $\mathbf{M} \cap (\{ \text{SSet} \} \cup \{ E_{\tau} : \tau \ge \aleph_0 \})$ is nonvoid,
- $\mathbf{M} \cap \{E_{\tau} : \tau < \aleph_0\}$ is infinite,
- $\mathbf{M} = \{E_2\}$,
- c. $E_{\aleph_0} \subseteq \bigcup M$ or $M = \{E_2\}$,
- 2. M is forwarding with respect to h_2 iff $h_2(\bigcup M) \subseteq \bigcup M$,
- 3. M is backwarding (resp. stationary) with respect to h_2 iff $\mathbf{M} \subseteq \{ \text{SSet } \} \cup \{ E_{\tau} : \tau \ge \aleph_0 \} \cup \{ E_2 \}.$

Proof. For finite p > 2 consider $X = \{1, ..., p-1\}$ and identity map $f: X \xrightarrow[x \mapsto x]{} X$, then $\operatorname{card}(\frac{X}{\Re_f}) = p-1$ and

$$(X, f) \in E_p$$
. However, $\operatorname{card}(\frac{X^k}{\Re_{f_k}}) = (p-1)^k \ge p$ and

 $h_2(X, f) \notin E_p$. Use Lemma 4(2) and a similar method described in the proof of Theorem 5 to complete the proof. Note 7 (infinite self-product). For arbitrary infinite set Γ consider $h: SSet \rightarrow SSet$ with $h(X, f) = (X^{\Gamma}, f_{\Gamma})$ with $f_{\Gamma}((x_i)_{i\in\Gamma}) = (f(x_i))_{i\in\Gamma}$. Then using similar method described in the finite case for each $(X, f) \in SSet$ we have

$$\operatorname{card}(\frac{X^{\Gamma}}{\mathfrak{I}_{f_{\Gamma}}}) = \left(\operatorname{card}(\frac{X}{\mathfrak{I}_{f}})\right)^{\operatorname{card}}$$

Т)

and

$$\operatorname{card}(\frac{X}{\mathfrak{R}_{f}}) \leq \operatorname{card}(\frac{X^{\Gamma}}{\mathfrak{R}_{f_{\Gamma}}}) \leq \left(\operatorname{card}(\frac{X}{\mathfrak{R}_{f}})\right)^{\operatorname{card}(\Gamma)}$$

Thus for any nonempty sub-class Μ of $\{ SSet \} \cup \{ D_{\tau} : \tau > 1 \}$ with SSet \in M, Μ is forwarding with respect to h. Also for nonempty sub-class M of $\{SSet\} \cup \{D_{\tau} : \tau \ge 2^{\operatorname{card}(\Gamma)}\}, M$ is stationary with respect to h. Also for any nonempty sub-class M of $\{SSet\} \cup \{E_{\tau} : \tau > 1\}$ with $SSet \in M$, M is forwarding with respect to h. Also for nonempty sub-class M of {SSet } \cup { E_{τ} : $\tau \ge 2^{\operatorname{card}(\Gamma)}$ }, M is stationary with respect to h.

4. Third operator: disjoint union

Consider arbitrary set Γ with at least two elements and $h_3: SSet \rightarrow SSet$ where $h_3(X, f) = (X \times \Gamma, f_{(\Gamma)})$ and $f_{(\Gamma)}(x, \gamma) = (f(x), \gamma)$ (as a matter of fact one may consider $h_3(X, f)$ "looks like" Γ copies disjoint union of (X, f)).

Lemma 8. For each $(X, f) \in SSet$ we have:

$$\operatorname{card}(\frac{X \times \Gamma}{\mathfrak{I}_{f_{(\Gamma)}}}) = \operatorname{card}(\Gamma) \operatorname{card}(\frac{X}{\mathfrak{I}_{f}})$$

and

$$\operatorname{card}(\frac{X \times \Gamma}{\mathfrak{R}_{f_{(\Gamma)}}}) = \operatorname{card}(\Gamma) \operatorname{card}(\frac{X}{\mathfrak{R}_{f}})$$

Proof. For each $(X, f) \in SSet$ and $(x, i), (y, j) \in X \times \Gamma$ we have:

$$((x,i),(y,j)) \in \mathfrak{I}_{f_{(\Gamma)}} \Leftrightarrow (x,y) \in \mathfrak{I}_f \land i = j$$

and

$$((x,i),(y,j)) \in \mathfrak{R}_{f_{(\Gamma)}} \Leftrightarrow (x,y) \in \mathfrak{R}_f \land i = j.$$

Thus:

$$\frac{X \times \Gamma}{\mathfrak{I}_{f(\Gamma)}} \to \frac{X}{\mathfrak{I}_{f}} \times \Gamma$$
$$\xrightarrow{(z,\gamma)}{\mathfrak{I}_{f(\Gamma)}} \mapsto (\frac{z}{\mathfrak{I}_{f}}, \gamma)$$

and

$$\frac{X \times \Gamma}{\mathfrak{R}_{f_{(\Gamma)}}} \to \frac{X}{\mathfrak{R}_{f}} \times \Gamma$$

$$\xrightarrow{(z,\gamma)}{\mathfrak{I}_{f(\Gamma)}} \mapsto (\frac{z}{\mathfrak{I}_{f}}, \gamma)$$

are bijective which lead to the desired result.

Theorem 9 (finite disjoint union). For finite Γ (with at least two elements) consider nonempty sub-class M of $\{\text{SSet}\} \cup \{D_{\tau}: \tau > 1\}$ and nonempty sub-class M' of $\{\text{SSet}\} \cup \{E_{\tau}: \tau > 1\}$, we have:

- 1. The following statements are equivalent:
 - a. $h_3(\bigcup M) \subseteq \bigcup M$,
 - b. one of the following conditions occurs:
 - $\mathbf{M} \cap (\{ \text{SSet} \} \cup \{ D_{\tau} : \tau \ge \aleph_0 \})$ is nonvoid,
 - $\mathbf{M} \cap \{D_{\tau} : \tau < \aleph_0\}$ is infinite,
 - c. $D_{\aleph_0} \subseteq \bigcup M$,
- 2. M is forwarding with respect to h_3 iff $h_3(\bigcup M) \subseteq \bigcup M$,
- 3. M is backwarding (resp. stationary) with respect to h_3 iff

 $\mathbf{M} \subseteq \{ \mathbf{SSet} \} \cup \{ D_{\tau} : \tau \ge \aleph_0 \},\$

- 4. The following statements are equivalent:
 - a. $h_3(\bigcup M') \subseteq \bigcup M'$,
 - b. one of the following conditions occurs:
 - $\mathbf{M}' \cap (\{ \text{SSet} \} \cup \{ E_{\tau} : \tau \ge \aleph_0 \})$ is nonvoid,
 - $\mathbf{M}' \cap \{E_{\tau} : \tau < \aleph_0\}$ is infinite,
 - c. $E_{\aleph_0} \subseteq \bigcup \mathbf{M}'$,

5. M' is forwarding with respect to h_3 iff $h_3(\bigcup M') \subseteq \bigcup M'$,

6. M' is backwarding (resp. stationary) with respect to h_3 iff $M \subseteq \{SSet\} \cup \{E_{\tau} : \tau \ge \aleph_0\}$.

Proof. For finite p > 1 consider $X = \{1, ..., p-1\}$ and identity map $f: X \xrightarrow[x\mapsto x]{} X$ as in the proof of Theorem 6, then

$$\operatorname{card}(\frac{X}{\mathfrak{I}_{f}}) = \operatorname{card}(\frac{X}{\mathfrak{R}_{f}}) = p-1$$
 and $(X, f) \in E_{p} \cap D_{p}$.

However

$$\operatorname{card}(\frac{X \times \Gamma}{\mathfrak{I}_{f_{(\Gamma)}}}) = \operatorname{card}(\frac{X \times \Gamma}{\mathfrak{R}_{f_{(\Gamma)}}}) = (p-1)\operatorname{card}(\Gamma) > p$$

and $h_3(X, f) \notin D_p \cup E_p$. Use Lemma 8 and a similar method described in Theorems 5 and 6 to complete the proof.

Note 10 (infinite disjoint union). For infinite Γ and nonempty sub-class M of {SSet} \cup { D_{τ} : $\tau > 1$ } with SSet \in M, M is forwarding with respect to h_3 . Also for nonempty sub-class M of {SSet} \cup { D_{τ} : $\tau > card(\Gamma)$ }, M is stationary with respect to h_3 . Also for any nonempty sub-class M of {SSet } \cup { E_{τ} : $\tau > 1$ } with SSet \in M, M is forwarding with respect to h_3 . Also for nonempty subclass M of {SSet } \cup { E_{τ} : $\tau \ge \text{card}(\Gamma)$ }, M is stationary with respect to h_3 .

5. Fourth operator: induced map on power set

For arbitrary set X and cardinal numbers \mathcal{G}, θ let

$$P_{>\theta}^{<9}(X) = \{A \subseteq X : \theta < \operatorname{card}(A) < \theta\}$$
$$P^{<9}(X) = \{A \subseteq X : \operatorname{card}(A) < \theta\},$$

and $h_4:$ SSet \rightarrow SSet with $h_4(X, f) = (P(X), P(f)) \in$ SSet where $P(f)(A) = f(A)(=\{f(x): x \in A\})$ (for $A \subseteq X$) also $h_4^{<\theta}(X, f) = (P^{<\theta}(X), P^{<\theta}(f)) \in$ SSet as the restriction of the above self-map to $P^{<\theta}(X)$, i.e. $P^{<\theta}(f) = P(f)|_{P^{<\theta}(X)}$.

Lemma 11. For $1 < k < \aleph_0$ we have:

$$\operatorname{card}(\frac{X}{\mathfrak{I}_{f}}) \leq \operatorname{card}(\frac{\mathrm{P}^{< k+1}(X)}{\mathfrak{I}_{\mathrm{P}^{< k+1}(f)}}) \leq \left(\operatorname{card}(\frac{X}{\mathfrak{I}_{f}})\right)^{2k-1} + 1.$$

have

In particular for infinite $\frac{X}{\Im_{f}}$ we

$$\operatorname{card}(\frac{X}{\mathfrak{I}_f}) = \operatorname{card}(\frac{\mathbf{P}^{< k+1}(X)}{\mathfrak{I}_{\mathbf{P}^{< k+1}(f)}}).$$

Proof. For each nonempty $A, B \in \mathbb{P}^{<k+1}(X)$ (i.e. $A, B \in \mathbb{P}_{>0}^{<k+1}(X)$) there exist $x_1, \dots, x_k, y_1, \dots, y_k \in X$ (may be not distinct) with $A = \{x_1, \dots, x_k\}, B = \{y_1, \dots, y_k\}$. Now for $(X, f) \in SSet$ and nonempty $A, B \in \mathbb{P}^{<k+1}(X)$ with $(A, B) \in \mathfrak{T}_{\mathbb{P}^{<k+1}(f)}$ and

$$A = \{x_1, \dots, x_k\}, B = \{y_1, \dots, y_k\}, \text{ we have}$$
$$P^{< k+1}(f)(A) = P^{< k+1}(f)(B)$$

thus $\{f(x_1), \dots, f(x_k)\} = \{f(y_1), \dots, f(y_k)\}$, so for each $i \in \{1, \dots, k\}$ there exist $s_i, t_i \in \{1, \dots, k\}$ with $f(x_i) = f(y_{s_i})$ and $f(y_i) = f(x_{t_i})$. Without any loss of generality we may assume $f(x_1) = f(y_1)$ and $s_1 = t_1 = 1$. Thus

$$(f(x_1), \dots, f(x_k), f(x_{t_2}), \dots, f(x_{t_k}))$$

= $(f(y_{s_1}), \dots, f(y_{s_k}), f(y_2), \dots, f(y_k))$

using the same notations as in the Second study we have $f_{2k-1}(x_1, \dots, x_k, x_{t_2}, \dots, x_{t_k}) = f_{2k-1}(y_{s_1}, \dots, y_{s_k}, y_2, \dots, y_k)$ and $((x_1, \dots, x_k, x_{t_2}, \dots, x_{t_k}), (y_{s_1}, \dots, y_{s_k}, y_2, \dots, y_k)) \in \mathfrak{I}_{f_{2k-1}}$ moreover, clearly we have

$$\{x_1, \dots, x_k, x_{t_2}, \dots, x_{t_k}\} = \{x_1, \dots, x_k\}$$

and $\{y_{s_1}, \dots, y_{s_k}, y_2, \dots, y_k\} = \{y_1, \dots, y_k\}$. Hence the following map is onto

$$\left\{ \underbrace{(z_i)_{1 \le i \le 2k-1}}_{\mathfrak{I}_{2k-1}} : \operatorname{card} \{z_1, \dots, z_{2k-1}\} \le k \right\} \xrightarrow{\mathbf{P}_{>0}^{< k+1}(X)} \underbrace{\frac{(z_i)_{1 \le i \le 2k-1}}_{\mathfrak{I}_{2k-1}} \underbrace{\{z_1, \dots, z_{2k-1}\}}_{\mathfrak{I}_{p^{< k+1}(f)}}}$$

(by $\frac{\mathbf{P}_{>0}^{< k+1}(X)}{\mathfrak{P}_{\mathbf{P}^{< k+1}(f)}}$ we mean $\frac{\mathbf{P}^{< k+1}(X)}{\mathfrak{P}_{\mathbf{P}^{< k+1}(f)}}$ except the equivalence

class of empty set).

Therefore (use the Section 3 too):

$$\operatorname{card}(\frac{\mathbf{P}_{>0}^{< k+1}(X)}{\mathfrak{T}_{\mathbf{P}^{< k+1}(f)}}) \leq \operatorname{card}(\frac{X^{2k-1}}{\mathfrak{T}_{f_{2k-1}}}) = \left(\operatorname{card}(\frac{X}{\mathfrak{T}_{f}})\right)^{2k-1}.$$

hence:

$$\operatorname{card}(\frac{\mathbf{P}^{< k+1}(X)}{\mathfrak{I}_{\mathbf{P}^{< k+1}(f)}}) \le \operatorname{card}(\frac{X^{2k-1}}{\mathfrak{I}_{f_{2k-1}}}) + 1 = \left(\operatorname{card}(\frac{X}{\mathfrak{I}_{f}})\right)^{2k-1} + 1$$

Moreover:

$$\frac{X}{\mathfrak{I}_{f}} \to \frac{\mathbf{P}^{

$$\xrightarrow{z}{\mathfrak{I}_{f}} \to \frac{\{z\}}{\mathfrak{I}_{\mathbf{p}^{$$$$

is one-to-one, thus

$$\operatorname{card}(\frac{X}{\mathfrak{I}_{f}}) \leq \operatorname{card}(\frac{\mathrm{P}^{< k+1}(X)}{\mathfrak{I}_{\mathrm{P}^{< k+1}(f)}}) \leq \left(\operatorname{card}(\frac{X}{\mathfrak{I}_{f}})\right)^{2k-1} + 1.$$

Corollary 12. For $1 < k < \aleph_0$ we have:

$$\operatorname{card}(\frac{X}{\mathfrak{R}_{f}}) \leq \operatorname{card}(\frac{\mathrm{P}^{< k+1}(X)}{\mathfrak{R}_{\mathrm{P}^{< k+1}(f)}}) \leq \left(\operatorname{card}(\frac{X}{\mathfrak{R}_{f}})\right)^{2k-1} + 1.$$

Proof. Use a similar method described in Lemma 11.

Note 13. For $1 < k < \aleph_0$, finite Γ (with at least two elements) nonempty sub-class M of {SSet } \cup { $D_\tau : \tau > 1$ } and nonempty sub-class M' of {SSet } \cup { $E_\tau : \tau > 1$ }, we have:

- $h_3(\bigcup M) \subseteq \bigcup M$ iff $h_4^{< k+1}(\bigcup M) \subseteq \bigcup M$,
- M is forwarding (respectively backwarding, stationary) with respect to $h_4^{< k+1}$ iff it is forwarding (respectively backwarding, stationary) with respect to h_3 ,
- $h_3(\bigcup M') \subseteq \bigcup M'$ iff $h_4^{< k+1}(\bigcup M') \subseteq \bigcup M'$,
- M' is forwarding (respectively backwarding, stationary) with respect to $h_4^{< k+1}$ iff it is forwarding (respectively backwarding, stationary) with respect to h_3 .

Proof. Use Theorem 9.

References

[1] F. Ayatollah Zadeh Shirazi, M. Miralaei, F. Zeinal Zadeh Farhadi, Study of a forwarding chain in the category of topological spaces between T0 and T2 with respect to one point compactification operator, *Chinese Journal of Mathematics*, Vol. 2014, 2014, Article ID 541538, 10 pages (doi:10.1155/2014/541538). [2] I. F. Putnam, Lecture Notes on Cantor Minimal Dynamics, Dept. of Math. And Stat., University of Victoria, Victoria B. C., Canada, Sept. 2015.