Generalized shift operators on ℓ^{∞}

Fatemah Ayatollah Zadeh Shirazi

Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran fatemah@khayam.ut.ac.ir

Abstract: In the following text we study the compactness of generalized shift operator on $\ell^{\infty}(\tau)$.

Keywords: Banach space, compact operator, generalized shift.

1. Introduction

One-sided shift $\{1, \dots, k\}^{\mathbf{N}} \rightarrow \{1, \dots, k\}^{\mathbf{N}}$ and two-sided $(x_1, x_2, \dots) \mapsto (x_2, x_3, \dots)$

shift $\{1,\ldots,k\}^{\mathbb{Z}} \to \{1,\ldots,k\}^{\mathbb{Z}}$ are amongst most studied $(x_n)_{n\in\mathbb{Z}}\mapsto(x_{n+1})_{n\in\mathbb{Z}}$

maps [6]. Consider arbitrary sets A, Γ with at least two elements and $\varphi: \Gamma \to \Gamma$, we call $\sigma_{\varphi}: A^{\Gamma} \to A^{\Gamma}$ with $\sigma_{\varphi}((x_{\alpha})_{\alpha \in \Gamma}) = (x_{\varphi(\alpha)})_{\alpha \in \Gamma} ((x_{\alpha})_{\alpha \in \Gamma} \in A^{\Gamma})$ a generalized shift (as a generalization of one-sided and two-sided shifts) which has been introduced for the first time in [2]. Dynamical and non-dynamical properties of generalized shifts have been studied in several texts like [3, 5].

It is well-known that for each (complex) Hilbert space Hthere exists a unique cardinal number τ such that H and $\ell^2(\tau) = \{(x_\alpha)_{\alpha < \tau} \in \mathbb{C}^{\tau} : \sum_{\alpha < \tau} |x_\alpha|^2 < +\infty\}$ (equipped with inner product $<(x_\alpha)_{\alpha < \tau}, (y_\alpha)_{\alpha < \tau} >= \sum_{\alpha < \tau} x_\alpha \overline{y_\alpha}$ and norm $||(x_\alpha)_{\alpha < \tau}|| = \sqrt{\sum_{\alpha < \tau} |x_\alpha|^2}$), where \mathbb{C} denotes the field of complex numbers. So for $\varphi: \tau \to \tau$ one may consider $\sigma_{\varphi}|_{\ell^2(\tau)}: \ell^2(\tau) \to \mathbb{C}^{\tau}$. As it has mentioned in [1], the following statements are equivalent (note that $\sigma_{\varphi}: \mathbb{C}^{\tau} \to \mathbb{C}^{\tau}$ is a linear map):

• $\sigma_{\varphi}|_{\ell^{2}(\tau)} (\ell^{2}(\tau)) \subseteq \ell^{2}(\tau),$

•
$$\sigma_{\varphi}|_{\ell^{2}(\tau)} (\ell^{2}(\tau)) \subseteq \ell^{2}(\tau) \text{ and } \sigma_{\varphi}|_{\ell^{2}(\tau)} : \ell^{2}(\tau) \to \ell^{2}(\tau)$$

is continuous,

 φ: τ → τ is bounded, i.e., there exists K∈ N such that for all α ∈ τ the set φ⁻¹(α) has at most K elements.

In the following text we consider the following Banach space (equipped with norm $||(x_{\alpha})_{\alpha<\tau}||_{\infty} = \sup |x_{\alpha}|$):

$$\ell^{\infty}(\tau) = \{ (x_{\alpha})_{\alpha < \tau} \in \mathbf{C}^{\tau} : \sup_{\alpha < \tau} | x_{\alpha} | < +\infty \}$$

we study $\sigma_{\varphi}|_{\ell^{\infty}(\tau)}$.

2. Results on $\sigma_{\varphi}|_{\ell^{\infty}(\tau)}$

In this section suppose $\tau \ge 2$ is a cardinal number and $\varphi: \tau \to \tau$ is arbitrary, as our first steps we prove the following theorem.

Theorem 1. We have the following statements:

- a. $\sigma_{\varphi}(\ell^{\infty}(\tau)) \subseteq \ell^{\infty}(\tau)$, b. $\sigma_{\varphi}|_{\ell^{\infty}(\tau)} \colon \ell^{\infty}(\tau) \to \ell^{\infty}(\tau)$ is continuous and (note that $\|\sigma_{\varphi}|_{\ell^{\infty}(\tau)} \models \sup\{\|\sigma_{\varphi}(z)\|_{\infty} \colon z \in \ell^{\infty}(\tau), \|z\|_{\infty} \leq 1\}$): $\|\sigma_{\varphi}|_{\ell^{\infty}(\tau)} \models 1$,
- c. the following statements are equivalent:
 - 1. $\sigma_{\varphi}(\ell^{\infty}(\tau)) = \ell^{\infty}(\tau)$, 2. $\sigma_{\varphi}(\ell^{\infty}(\tau))$ is dense in $\ell^{\infty}(\tau)$, 3. $\varphi: \tau \to \tau$ is one-to-one.

Proof. a, b) Consider
$$x = (x_{\alpha})_{\alpha < \tau} \in \ell^{\infty}(\tau)$$
, then

$$\|\sigma_{\varphi}(x)\|_{\infty} = \|\sigma_{\varphi}((x_{\alpha})_{\alpha < \tau})\|_{\infty} = \|(x_{\varphi(\alpha)})_{\alpha < \tau}\|_{\infty}$$

$$= \sup_{\alpha < \tau} |x_{\varphi(\alpha)}| \le \sup_{\alpha < \tau} |x_{\alpha}| = \|(x_{\alpha})_{\alpha < \tau}\|_{\infty} = \|x\|_{\infty}$$
and $\|\sigma_{\varphi}(x)\|_{\infty} \le \|x\|_{\infty}$, hence $\sigma_{\varphi}(x) \in \ell^{\infty}(\tau)$, also
 $\sigma_{\alpha}\|_{\ell^{\infty}(\tau)} : \ell^{\infty}(\tau) \to \ell^{\infty}(\tau)$ is continuous and

 $\sigma_{\varphi}|_{\ell^{\infty}(\tau)} \colon \ell^{\infty}(\tau) \to \ell^{\infty}(\tau) \quad \text{is continuous and} \\ \|\sigma_{\varphi}|_{\ell^{\infty}(\tau)} \| \leq 1, \text{ on the other hand } (1)_{\alpha < \tau} \in \ell^{\infty}(\tau) \text{ and} \\ \|\sigma_{\varphi}((1)_{\alpha < \tau})\|_{\infty} = \|(1)_{\alpha < \tau}\|_{\infty} = 1 \text{ which completes the proof} \\ \text{of } \|\sigma_{\varphi}|_{\ell^{\infty}(\tau)} \| = 1.$

c) We complete the proof by showing " $(2) \Rightarrow (3)$ " and " $(3) \Rightarrow (1)$ ".

(2) \Rightarrow (3): Suppose $\varphi: \tau \to \tau$ is not one-t-one, choose $\beta < \theta < \tau$ with $\varphi(\beta) = \varphi(\theta)$. Let $q_{\beta} = 1$ and $q_{\alpha} = 0$ for $\alpha \neq \beta$. Then $U := \{x \in \ell^{\infty}(\tau) : || x - (q_{\alpha})_{\alpha < \tau} ||_{\infty} < \frac{1}{2}\}$ is an open neighborhood of $(q_{\alpha})_{\alpha < \tau} (\in \ell^{\infty}(\tau))$, moreover for all $(x_{\alpha})_{\alpha < \tau} \in \ell^{\infty}(\tau)$ we have $|| \sigma_{\varphi}(x) - (q_{\alpha})_{\alpha < \tau} ||_{\infty} = || (x_{\varphi(\alpha)})_{\alpha < \tau} - (q_{\alpha})_{\alpha < \tau} ||_{\infty}$

$$= \sup_{\alpha < \tau} |x_{\varphi(\alpha)} - q_{\alpha}| \ge \max(|x_{\varphi(\beta)} - q_{\beta}|, |x_{\varphi(\theta)} - q_{\theta}|)$$

$$= \max(|x_{\varphi(\beta)} - 1|, |x_{\varphi(\theta)}|) \ge \frac{1}{2}(|x_{\varphi(\beta)} - 1| + |x_{\varphi(\theta)}|)$$

$$\stackrel{\varphi(\beta) = \varphi(\theta)}{=} \frac{1}{2}(|x_{\varphi(\beta)} - 1| + |x_{\varphi(\beta)}|) \ge \frac{1}{2}|x_{\varphi(\beta)} - 1 - x_{\varphi(\beta)}| = \frac{1}{2}$$

thus $\sigma_{\varphi}(\ell^{\infty}(\tau)) \cap U$ is empty and $\sigma_{\varphi}(\ell^{\infty}(\tau))$ is not dense in $\ell^{\infty}(\tau)$.

(3) \Rightarrow (1): Suppose $\varphi: \tau \to \tau$ is one-to-one and choose $x = (x_{\alpha})_{\alpha < \tau} \in \ell^{\infty}(\tau)$ define $y = (y_{\alpha})_{\alpha < \tau}$ with:

$$y_{\alpha} := \begin{cases} x_{\beta} & \beta < \tau, \alpha = \varphi(\beta), \\ 0 & \text{otherwise}. \end{cases}$$

Then

 $|| y ||_{\infty} = \sup_{\alpha < \tau} | y_{\alpha} | = \sup_{\substack{\alpha = \varphi(\beta), \\ \beta < \tau}} | x_{\beta} | \le \sup_{\alpha < \tau} | x_{\alpha} | = || x ||_{\infty} < +\infty$

and $y \in \ell^{\infty}(\tau)$. Moreover $\sigma_{\varphi}(y) = (y_{\varphi(\alpha)})_{\alpha < \tau} = (x_{\alpha})_{\alpha < \tau}$ which completes the proof.

Let's recall that in Banach spaces X, Y we say linear continuous map $T: X \to Y$ is a compact operator if $\overline{\{T(x): ||x|| < 1\}}$ is a compact subset of Y [4].

Theorem 2. $\sigma_{\varphi}|_{\ell^{\infty}(\tau)} \colon \ell^{\infty}(\tau) \to \ell^{\infty}(\tau)$ is a compact operator if and only if $\varphi(\tau)$ is finite.

Proof. First suppose $\varphi(\tau)$ is infinite. Choose one-to-one sequence $\{\alpha_i\}_{i\geq 1}$ in τ such that $\{\varphi(\alpha_i)\}_{i\geq 1}$ is a one-to-one sequence too. For each $i \geq 1$ let $x_i = (x_{\alpha}^i)_{\alpha < \tau} \in \ell^{\infty}(\tau)$ with $x_{\alpha_i}^i = \frac{1}{2}$ and $x_{\alpha}^i = 0$ for $\alpha \neq \alpha_i$. Then for $i \neq j$ we have $\|\sigma_{\varphi}(x_i) - \sigma_{\varphi}(x_j)\|_{\infty} = \frac{1}{2}$ and $\{\sigma_{\varphi}(x_i)\}_{i\geq 1}$ does not have any convergent subsequence however $\{x_i\}_{i\geq 1}$ is a sequence in $\{x \in \ell^{\infty}(\tau) : \|x\|_{\infty} < 1\}$, so $\sigma_{\varphi}|_{\ell^{\infty}(\tau)} : \ell^{\infty}(\tau) \to \ell^{\infty}(\tau)$ is not compact.

Now suppose $\varphi(\tau)$ is finite, in this case $\sigma_{\varphi}(\ell^{\infty}(\tau))$ is a finite dimensional subset of $\sigma_{\varphi}(\ell^{\infty}(\tau))$, thus its closed bounded subsets are compact, using Theorem 1, $\sigma_{\varphi}\{x \in \ell^{\infty}(\tau) : ||x||_{\infty} < 1\} (\subseteq \{x \in \ell^{\infty}(\tau) : ||x||_{\infty} < 1\})$ is a bounded subset of $\sigma_{\varphi}(\ell^{\infty}(\tau))$, which leads to the desired result.

3. Generalized shifts on subspaces of ℓ^{∞}

As it is common in the literature, for the least infinite cardinal number $\omega = \{0, 1, 2, ...\}$ we denote $\ell^{\infty}(\omega)$ by ℓ^{∞} . Consider the following subspaces of ℓ^{∞} :

- $\ell_{00}^{\infty} := \{(x_n)_{n < \omega} \in \ell^{\infty} : \exists N \ \forall n \ge N \ x_n = 0\}$
- $\ell_{0c}^{\infty} := \{ (x_n)_{n < \omega} \in \ell^{\infty} : \exists z \exists N \forall n \ge N x_n = z \}$
- $\ell_0^{\infty} := \{ (x_n)_{n < \omega} \in \ell^{\infty} : \lim_{n \to +\infty} x_n = 0 \}$
- $\ell_c^{\infty} := \{ (x_n)_{n < \omega} \in \ell^{\infty} : \exists z \lim_{n \to +\infty} x_n = 0 \}$

thus $\ell_{00}^{\infty} \subseteq \ell_0^{\infty} \subseteq \ell_c^{\infty} \subseteq \ell^{\infty}$ and $\ell_{00}^{\infty} \subseteq \ell_{0c}^{\infty} \subseteq \ell_c^{\infty} \subseteq \ell^{\infty}$. In this section consider $\varphi : \omega \to \omega$.

Theorem 3. The following statements are equivalent:

1.
$$\sigma_{\varphi}(\ell_{00}^{\infty}) \subseteq \ell_{00}^{\infty}$$
,
2. $\sigma_{\varphi}(\ell_{0}^{\infty}) \subseteq \ell_{0}^{\infty}$,

3. for all $n \in \omega$ the set $\varphi^{-1}(n)$ is finite (i.e., φ is finite fiber).

Proof. "(2) \Rightarrow (3)" and "(1) \Rightarrow (3)": Suppose there exists $p \in \omega$ such that $\varphi^{-1}(p)$ is infinite. Consider $u = (u_n)_{n < \omega}$ with $u_p = 1$ and $u_n = 0$ for $n \neq p$. Then we have $u \in \ell_{00}^{\infty} (= \ell_0^{\infty} \cap \ell_{00}^{\infty})$ and $\sigma_{\varphi}(u) \notin \ell_0^{\infty} (= \ell_0^{\infty} \cup \ell_{00}^{\infty})$, thus not only $\sigma_{\varphi}(\ell_0^{\infty}) \not\subset \ell_0^{\infty}$, but also $\sigma_{\varphi}(\ell_{00}^{\infty}) \not\subset \ell_{00}^{\infty}$.

(3) \Rightarrow (1): Suppose (3) is valid and $(x_n)_{n<\omega} \in \ell_{00}^{\infty}$, then there exists $N \in \omega$ such that for all $n \ge N$ we have $x_n = 0$. Since φ is finite fiber, $\varphi^{-1}(\{0, ..., N\})$ is finite and $m = \max(\varphi^{-1}(\{0, ..., N\}) \cup \{0\}) \in \omega$. So $x_{\varphi(n)} = 0$ for all $n \ge m+1$. Hence $\sigma_{\varphi}((x_n)_{n<\omega}) = (x_{\varphi(n)})_{n<\omega} \in \ell_{00}^{\infty}$. (3) \Rightarrow (2): Suppose (3) is valid and $(x_n)_{n<\omega} \in \ell_{00}^{\infty}$, then $\lim_{n \to +\infty} x_n = 0$ and for every $\varepsilon > 0$ there exists $N \in \omega$ such that for all $n \ge N$ we have $|x_n| < \varepsilon$. Since φ is finite fiber, $m = \max(\varphi^{-1}(\{0, ..., N\}) \cup \{0\}) \in \omega$. So for all $n \ge m+1$ we have $|x_{\varphi(n)}| < \varepsilon$. Thus $\lim_{n \to +\infty} x_{\varphi(n)} = 0$ and $\sigma_{\varphi}((x_n)_{n<\omega}) = (x_{\varphi(n)})_{n<\omega} \in \ell_0^{\infty}$.

Theorem 4. The following statements are equivalent:

1.
$$\sigma_{\varphi}(\ell_{0c}^{\infty}) \subseteq \ell_{0c}^{\infty}$$

2. $\sigma_{\varphi}(\ell_{c}^{\infty}) \subseteq \ell_{c}^{\infty}$,

3. for all $n \in \omega$ " $\varphi^{-1}(n)$ is finite" or " $\omega \setminus \varphi^{-1}(n)$ is finite". *Proof.* First suppose there exists $p \in \omega$ such that both sets $\varphi^{-1}(p)$ and $\omega \setminus \varphi^{-1}(p)$ are infinite. Consider $u = (u_n)_{n < \omega}$ with $u_p = 1$ and $u_n = 0$ for $n \neq p$. Then we have $u \in \ell_{0c}^{\infty} (= \ell_c^{\infty} \cap \ell_{0c}^{\infty})$, let $(v_n)_{n < \omega} = (u_{\varphi(n)})_{n < \omega} = \sigma_{\varphi}(u)$. Using infiniteness of $\varphi^{-1}(p)$ and $\omega \setminus \varphi^{-1}(p)$ there exist $m_1 < m_2 < \cdots$ in $\varphi^{-1}(p)$ and there exist $k_1 < k_2 < \cdots$ in $\omega \setminus \varphi^{-1}(p)$ thus $\lim_{n \to \infty} v_{m_n} = 1$ and $\lim_{n \to \infty} v_{k_n} = 0$. Hence $\lim_{n \to \infty} v_n$ does not exist and $\sigma_{\varphi}(u) = (v_n)_{n < \omega} \notin \ell_{00}^{\infty}$. So not only $\sigma_{\varphi}(\ell_0^{\infty}) \not\subset \ell_0^{\infty}$, but also $\sigma_{\varphi}(\ell_{00}^{\infty}) \not\subset \ell_{00}^{\infty}$. Thus "(2) \Rightarrow (3)" and "(1) \Rightarrow (3)". (3) \Rightarrow (1): Suppose (3) is valid and $(x_n)_{n<\omega} \in \ell_{0c}^{\infty}$, then there exists $N \in \omega$ such that for all $n \ge N$ we have $x_n = x_N =; z$. We have the following cases:

Case 1: φ is finite fiber. In this case $\varphi^{-1}(\{0,...,N\})$ is finite and $m = \max(\varphi^{-1}(\{0,...,N\}) \cup \{0\}) \in \omega$. So $x_{\varphi(n)} = z$ for all $n \ge m+1$. Hence $\sigma_{\varphi}((x_n)_{n < \omega}) = (x_{\varphi(n)})_{n < \omega} \in \ell_{0c}^{\infty}$.

Case 2: there exists $p \in \omega$ such that $\varphi^{-1}(p)$ is infinite. So in this case $\omega \setminus \varphi^{-1}(p)$ is finite and there exists $M \in \omega$ with $\omega \setminus \varphi^{-1}(p) \subseteq \{0, ..., M\}$. For all $n \ge M + 1$ we have $n \in \varphi^{-1}(p)$ and $\varphi(n) = p$, hence $x_{\varphi(n)} = x_p$ which shows $\sigma_{\varphi}((x_n)_{n < \omega}) = (x_{\varphi(n)})_{n < \omega} \in \ell_{0c}^{\infty}$.

(3) \Rightarrow (2): Suppose (3) is valid and $(x_n)_{n<\omega} \in \ell_c^{\infty}$, then $\{x_n\}_{n<\omega}$ is a convergent and hence Cauchy so for every $\varepsilon > 0$ there exists $N \in \omega$ such that for all $n, m \ge N$ we have $|x_n - x_m| < \varepsilon$. We have the following cases:

Case 1: φ is finite fiber. In this case $\varphi^{-1}(\{0,...,N\})$ is finite and $M = \max(\varphi^{-1}(\{0,...,N\}) \cup \{0\}) \in \omega$. So for all $n,m \ge M+1$ we have $\varphi(n), \varphi(m) > N$ therefore $|x_{\varphi(n)} - x_{\varphi(m)}| < \varepsilon$.

Case 2: there exists $p \in \omega$ such that $\varphi^{-1}(p)$ is infinite. So in this case $\omega \setminus \varphi^{-1}(p)$ is finite and there exists $M \in \omega$ with $\omega \setminus \varphi^{-1}(p) \subseteq \{0, ..., M\}$. For all $n, m \ge M + 1$ we have $x_{\varphi(n)} = x_p = x_{\varphi(m)}$ which shows $|x_{\varphi(n)} - x_{\varphi(m)}| = 0 < \varepsilon$. Using the above cases, there exists $M \in \omega$ with $|x_{\varphi(n)} - x_{\varphi(m)}| < \varepsilon$ for all $n, m \ge M + 1$. Therefore $\{x_{\varphi(n)}\}_{n < \omega}$ is a Cauchy hence convergent sequence in **C**. Therefore $\sigma_{\varphi}((x_n)_{n < \omega}) = (x_{\varphi(n)})_{n < \omega} \in \ell_{c}^{\infty}$.

References

- F. Ayatollah Zadeh Shirazi, F. Ebrahimifar, Is there any nontrivial compact generalized shift operator on Hilbert spaces? *Rendiconti del Circolo Matematico di Palermo Series 2*, 1-6, 2018.
- [2] F. Ayatollah Zadeh Shirazi, N. Karami Kabir, F. Heydari Ardi, *Mathematica Panonica*, *Proceedings of ITES*-2007, 19/2, 187-195, 2008.
- [3] F. Ayatollah Zadeh Shirazi, J. Nazarian Sarkooh, B. Taherkhani, On Devaney chaotic generalized shift dynamical systems, *Studia Scientiarum Mathematicarum Hungarica*, 50/ no. 4, 509-522, 2013.
- [4] J. B. Conway, A course in abstract analysis, *Graduate Studies in Mathematics, 141, American Mathematical Society*, Providence, RI, 2012.

- [5] A. Giordano Bruno, Algebraic entropy of generalized shifts on direct products, *Communications in Algebra*, 38/11, 4155-4174, 2010.
- [6] P. Walters, An Introduction to ergodic theory, *Graduate texts in Mathematics, 79, Springer-Verlag,* 1982.