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1. Introduction 
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  are amongst most studied 

maps [6]. Consider arbitrary sets ,A  with at least two 

elements and : , we call 
  AA:  with 

))(()())(( )(


  Axxx   a generalized 

shift (as a generalization of one-sided and two-sided shifts) 

which has been introduced for the first time in [2]. 

Dynamical and non-dynamical properties of generalized 

shifts have been studied in several texts like [3, 5]. 

It is well-known that for each (complex) Hilbert space H  

there exists a unique cardinal number   such that H  and 
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  ), where C  denotes the field of 

complex numbers. So for  :  one may consider 
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. As it has mentioned in [1], the 

following statements are equivalent (note that 


 CC :  is a linear map): 
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is continuous, 

  :  is bounded, i.e., there exists NK  such that 

for all    the set )(1  
 has at most K  elements. 

In the following text we consider the following Banach space 

(equipped with norm ||sup||)(|| 
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we study 
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2. Results on 
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In this section suppose 2  is a cardinal number and 

 :  is arbitrary, as our first steps we prove the 

following theorem. 

Theorem 1. We have the following statements: 
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 is continuous and (note that 
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c. the following statements are equivalent: 

1. )())(( 
   , 

2. ))(( 
  is dense in )( , 

3.  :  is one-to-one. 

Proof. a, b) Consider )()( 


  xx , then 
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 is continuous and 
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, on the other hand )()1( 


   and 

1||)1(||||))1((||     which completes the proof 

of 1|||||
)(
  

.  

c) We complete the proof by showing “(2) (3)” and 

“(3) (1)”. 

(2) (3): Suppose  :  is not one-t-one, choose 

   with )()(   . Let 1q  and 0q  for 

  .  Then }||)(:||)({:
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open neighborhood of ))(()( 
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thus U ))((    is empty and ))(( 
  is not dense 

in )( . 

(3) (1): Suppose  :  is one-to-one and choose 
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and )(y . Moreover    )()()( )( xyy  

which completes the proof. 

 

Let’s recall that in Banach spaces YX ,  we say linear 

continuous map YXT :  is a compact operator if 

}1||:||)({ xxT  is a compact subset of Y  [4]. 

 

Theorem 2. )()(:|
)(




  


 is a compact 

operator if and only if )(  is finite. 

Proof. First suppose )(  is infinite. Choose one-to-one 

sequence 1}{ ii  in   such that 1)}({ ii  is a one-to-one 

sequence too. For each 1i  let )()( 


  i
i xx  with 

2
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i
x  and 0ix  for i  . Then for ji   we have 

2
1||)()(||  ji xx    and 1)}({ iix  does not have 

any convergent subsequence however 1}{ iix  is a sequence 

in }1||:||)({  
 xx  , so )()(:|

)(



  


 is 

not compact. 

Now suppose )(  is finite, in this case ))(( 
  is a 

finite dimensional subset of ))(( 
 , thus its closed 

bounded subsets are compact, using Theorem 1, 

})1||:||)({}(1||:||)({  



 xxxx    is a 

bounded subset of ))(( 
 , which leads to the desired 

result. 

3. Generalized shifts on subspaces of   

As it is common in the literature, for the least infinite 

cardinal number },2,1,0{   we denote )(  by 
 . 

Consider the following subspaces of 
 : 
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   c000  and 

   cc000 . In 

this section consider  : . 

 

Theorem 3. The following statements are equivalent: 

1. 
  0000 )(  , 

2. 
  00 )(  , 

3. for all n  the set )(1 n  is finite (i.e.,   is finite 

fiber). 

Proof. “(2) (3)” and “(1) (3)”: Suppose there exists 

p  such that )(1 p  is infinite. Consider  nnuu )(  

with 1pu  and 0nu  for pn  . Then we have 

)( 00000
  u  and )()( 0000

  u , thus 

not only 
  00 )(  , but also 

  0000 )(  .  

(3) (1): Suppose (3) is valid and 


  00)( nnx , then 

there exists N  such that for all Nn   we have 

0nx . Since   is finite fiber, }),,0({1 N  is finite 

and    })0{}),,0({max( 1 Nm  . So 0)( nx  

for all 1 mn . Hence 


  00)( )())((  nnnn xx . 

(3) (2): Suppose (3) is valid and 


  0)( nnx , then 

0lim 


n
n

x  and for every 0  there exists N  such 

that for all Nn   we have || nx . Since   is finite fiber, 

   })0{}),,0({max( 1 Nm  . So for all 

1 mn  we have  || )(nx . Thus 0lim )( 


n
n

x  and 


  0)( )())((  nnnn xx . 

 

Theorem 4. The following statements are equivalent: 

1. 
  cc 00 )(  , 

2. 
  cc  )( , 

3. for all n  “ )(1 n  is finite” or “ )(\ 1 n  is finite”. 

Proof. First suppose there exists p  such that both sets 

)(1 p  and )(\ 1 p  are infinite. Consider  nnuu )(  

with 1pu  and 0nu  for pn  . Then we have 

)( 00
  cccu  , let )()()( )( uuv nnnn    . 

Using infiniteness of )(1 p  and )(\ 1 p  there exist 

 21 mm  in )(1 p  and there exist  21 kk  in 

)(\ 1 p  thus 1lim 
 nm

n
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n

v . Hence 

n
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lim  does not exist and 


  cnnvu  )()( . So not 

only 
  00 )(  , but also 

  0000 )(  . Thus 

“(2) (3)” and “(1) (3)”. 
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(3) (1): Suppose (3) is valid and 


  cnnx 0)(  , then 

there exists N  such that for all Nn   we have 

zxx Nn ; . We have the following cases: 

Case 1:   is finite fiber. In this case }),,0({1 N  is 

finite and    })0{}),,0({max( 1 Nm  . So 

zx n )(  for all 1 mn . Hence 


  cnnnn xx 0)( )())((  . 

Case 2: there exists p  such that )(1 p  is infinite. So 

in this case )(\ 1 p  is finite and there exists M  

with },,0{)(\ 1 Mp  . For all 1 Mn  we have 

)(1 pn   and pn )( , hence pn xx )(  which shows  


  cnnnn xx 0)( )())((  . 

(3) (2): Suppose (3) is valid and 


  cnnx )( , then 

nnx }{  is a convergent and hence Cauchy so for every 

0  there exists N  such that for all Nmn ,  we 

have  || mn xx . We have the following cases: 

Case 1:   is finite fiber. In this case }),,0({1 N  is 

finite and    })0{}),,0({max( 1 NM  . So  for 

all 1,  Mmn  we have Nmn )(),(   therefore 

  || )()( mn xx . 

Case 2: there exists p  such that )(1 p  is infinite. So 

in this case )(\ 1 p  is finite and there exists M  

with },,0{)(\ 1 Mp  . For all 1,  Mmn  we 

have )()( mpn xxx    which shows   0|| )()( mn xx . 

Using the above cases, there exists M  with 

  || )()( mn xx  for all 1,  Mmn . Therefore 

 nnx }{ )(  is a Cauchy hence convergent sequence in C . 

Therefore 


  cnnnn xx  )())(( )( . 
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