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Abstract: In the following text we study the compactness of
generalized shift operator on £” (7).
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1. Introduction

One-sided shift {L,....k} —>{L....k}" and two-sided

(X, X I (X Xg07)
shift {1,....k}* > {L,...,k}* are amongst most studied
(Xn)nsz'_)(xml)nez

maps [6]. Consider arbitrary sets A,I" with at least two

elements and @:T—>T, we call o,:A" - A" with

0, (%) aer) = Ko )aer (Xo) ger € A7) a generalized

shift (as a generalization of one-sided and two-sided shifts)
which has been introduced for the first time in [2].
Dynamical and non-dynamical properties of generalized
shifts have been studied in several texts like [3, 5].

It is well-known that for each (complex) Hilbert space H
there exists a unique cardinal number 7 such that H and

7%(z) ={(x,),., €C’ L2 X, |*< +o0} (equipped with

inner product <(X,),-,;»(Y,)

a<rt

>= ¥ X, Y, and norm
o<t

(X)) per 1=/ = X, I ), where C denotes the field of

complex numbers. So for @:7z— 7 one may consider
:0%(r) > C". As it has mentioned in [1], the

(o)’
following that

G¢|

statements are  equivalent  (note

o, :C" — C" isalinear map):
® O-¢ |!:2(r) (KZ(T)) - EZ(T)!

(*(7)) < ¢?(z) and o, | :03(7) > 1%(7)

* g,l ()

(1)
is continuous,
e @:7— 7 isbounded, i.e., there exists K € N such that

forall o e theset @ *(cr) hasat most K elements.
In the following text we consider the following Banach space
(equipped with norm (X, ). [l =SUp | X, |):
a<t

07(7) ={(%,) 4 €C7 18UP [ X, < +20}

a<r

we study o, |4’°°(r)'

2. Resultson o, |

17 ()

In this section suppose 7 >2 is a cardinal number and
@7t — 7 is arbitrary, as our first steps we prove the

following theorem.
Theorem 1. We have the following statements:

a o, (" (D) <7 (),

b. o, |¢*(r): 7 (r) = £”(r) is continuous and (note that

oy |- IFsuplll o, () |- 2 € 07 (2). Ml 2 Il < 1}):
” O-(p |f’°(r) ”: 1 1
c. the following statements are equivalent:
1L o,(*()=1"(7),
2. 0,(L"(z)) isdensein (*(7),
3. ¢ T —> T isone-to-one.
Proof. a, b) Consider X =(X,),., € 7 (), then
1, () Lo =l (X)) e ) e =l (X e e

=SUP | X,y [<SUP [ X, HII(Xg) ger o=l XL,
a<t a<tr
and  [lo, (X)[l..<[Ix]|l,, hence

éw(r)if (r) > (% (7) is

o,(x)el*(r), also

o, continuous and

o, |MT)||£1, on the other hand (1), . €/¢”(r) and

lo, (D) 1=l (D) oe, l,=1 which completes the proof
*(z) IF1.

c) We complete the proof by showing “(2) = (3)” and
“(3) j (1)”.
(2)= (3): Suppose @ T —>7

B <0<z with p(B)=¢(0).Let ;=1 and q, =0 for
a#p. Then U :={xe(”(z)] x—(q,)
open neighborhood of (q,)

of o, |

is not one-t-one, choose

aer <3} isan

(e £*(z)), moreover for all

a<t

(X,) ger €L7(7) we have
16, (¥) = () aer 1o =M1 Koy aer = () e I
=sup | Xga(a) - qa |Z maX(l X(p(ﬂ) - qﬂ |’| X(p(&) - q& |)

a<rt

=max(| X,z =11 X0 D)= 5 ( X005y =11+ X0 )
o(B)=p(0)
_ 1 1 _ 1
= (X =L+ X5 D2 31X 05) = 1= X5y F 5

[69]
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thus o, (¢*(z)) NU isempty and o, (¢ (7)) is not dense
in (7(z).
(3)= (1): Suppose ¢@:7 — 7 is one-to-one and choose

X:(Xa)OKT € (" (z) define y:(ya)a<r with:

y ::{Xﬁ B<r,a=9(B),
“ 0 otherwise .
Then
Iy lle=sup |y, |= sup |Xs|<sup|x, |=|x||, <+
a<z %:f(ﬂ), a<r

and y e l”(z) . Moreover &,(Y) =(Yp(a))ace = (Xe) aer
which completes the proof.

Let’s recall that in Banach spaces X,Y we say linear
continuous map T:X —Y is a compact operator if

{T(x) || x|l< 1} is a compact subset of Y [4].

Theorem 2. o, |€m(r):€°°(r)—>€°c(r)

operator if and only if ¢(7) is finite.
Proof. First suppose ¢@(z) is infinite. Choose one-to-one

is a compact

sequence {«; }is; in 7 such that {@(e;)}is, is a one-to-one

sequence too. For each i >1 let x; = (x.),.. € £*(z) with

a<t

Xi

[}

1 and x}, =0 for @ # ;. Then for i# j we have

lo,(%)-0o,(X;)Il.=3 and {o,(x;)} does not have
any convergent subsequence however {X;}, is a sequence
in {xe" (@) x|.<L%, so o, |€°°(r): 17(r) > L7 () is
not compact.

Now suppose ¢() is finite, in this case o,(¢*(z)) is a
finite dimensional subset of o, (/" (7)), thus its closed
bounded subsets are compact, using Theorem 1,
o {xe (@) x|l.<Hc{xe " (D)l x].<1}) is a
bounded subset of o, (¢* (7)), which leads to the desired

result.

3. Generalized shifts on subspaces of ¢~

As it is common in the literature, for the least infinite
cardinal number @={0,1,2,...} we denote /”(w) by /.

Consider the following subspaces of ¢ :
o 050 ={(X\)new €L AN VN> N x, =0}
o U5 i ={(X))nep €7 :FZIN VN2>N X, =27}

o 13 ={(Xy)neo €7 ¢ lim x, =0}

o 1% ={(X\)new €L7 132 lim x, =0}
n—+o0

thus /oy 0y <l <l” and (oo ly. < le <f”. In
this section consider ¢ 10— ®.

Theorem 3. The following statements are equivalent:
L O, (250) S Lo

3. for all new the set @ *(n) is finite (i.e., ¢ is finite
fiber).
Proof. “(2)= (3)” and “(1)= (3)”: Suppose there exists

p e such that @ *(p) is infinite. Consider u=(u,),.,
with u, =1 and u, =0 for n=p. Then we have
Uelo(=Lg Nly) and o,(u)ely (=Ll Uly), thus
notonly o, (/5) & (g ,butalso o, ({g) {5 -

(3)= (1): Suppose (3) is valid and (X,),., € ‘o, then
there exists N e such that for all
x,=0. Since ¢ is finite fiber, @ *({0,...,N}) is finite
and m=max(¢ "({0,...Np) {0} ew. So X, =0

n>N we have

forall n>m+1. Hence o, ((X,)new) = (X, ncw € Lo0 -

(3)= (2): Suppose (3) is valid and (X,)n., €%y, then

lim x, =0 and for every &>0 there exists N € such
nN—+oo

that forall N> N we have | X, |[< & . Since ¢ is finite fiber,

m=max(¢ *({0,....Nhu{0Dew. So for all
n>m+1 we have |X,q [<¢&. Thus lim X, =0 and
n—+oo

O, ((Xn)n<m) = (X(p(n))nqo < EBC :

Theorem 4. The following statements are equivalent:

1. 0, (£oc) < oo

3.forall new “p'(n) is finite” or “@\ ¢ ' (n) is finite”.
Proof. First suppose there exists p € @ such that both sets

¢ (p) and w\ @ *(p) are infinite. Consider u = (u,)

n<o

with u, =1 and u, =0 for n=p. Then we have

ue [())OC (= ff mfz)oc) ! let (Vn)n<w = (u(p(n))nqo = O-(p (U) .
Using infiniteness of ¢ *(p) and w\¢ *(p) there exist
m, <m, <--- in @ (p) and there exist k, <k, <--- in

o\p'(p) thus limv, =1 and limv, =0. Hence
n—oowo " n

n—oo

lim v, does not exist and &, (u) =(V,),, ¢ . So not

n—oo
only o,(lg)zly, but also o,(lg)z g Thus

“2)= (3)” and “(1) = (3)".
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(3)= (1): Suppose (3) is valid and (X,)n., € {oc. then
there exists N €@ such that for all n>N we have
X, = Xy =:Z . We have the following cases:

Case 1: ¢ is finite fiber. In this case @ *({0,...,N}) is
m = max(¢ *({0,...N) U{0}) e . So
n>m+1.

finite and

Xpn) = Z for all Hence

T (X1 neo) = Ky(m)Incw € Loc

Case 2: there exists p e @ such that @ *(p) is infinite. So
in this case @\ '(p) is finite and there exists M € @
with @\ @ (p) ={0,...,M}. For all n>M +1 we have

neg*(p) and p(n) = p, hence X,(n) = X, Which shows

T (X1 neo) = Xy(m)Incw € Loc

(3)= (2): Suppose (3) is valid and (X,),., €<, then
{X,}.-, is @ convergent and hence Cauchy so for every
&>0 there exists N € w such that for all nm>N we
have | X, — X, |< & . We have the following cases:

Case 1: ¢ is finite fiber. In this case ¢ *({0,...,N}) is
finite and M =max(@ *({0,....N) u{0}) ew. So for
al nm>=M+1 we have ¢@(n),(m)> N therefore
[ Xp(ny = Xp(m < & -

Case 2: there exists p €@ such that @ *(p) is infinite. So
in this case @\ '(p) is finite and there exists M € @
with @\ *(p)<{0,...,M}. For all nm>M+1 we
have X,y = X, = X,(m) Which shows [ X,y —X,m [=0<¢.

there exists M e with
nm>M+1. Therefore

Using the above cases,

{X,(n)}n<w is @ Cauchy hence convergent sequence in C.

Therefore o, (X)) new) = (X(/;(n))n<a) el
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