Set-theoretical entropy of Alexandroff square homeomorphisms

Fatemah Ayatollah Zadeh Shirazi and Sahar Dakhili*

¹Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran fatemah@khayam.ut.ac.ir, dakhilisahar@gmail.com * Corresponding author

Abstract: In the following text for Alexandroff square **A**, and unit square **O** (also equal to $[0,1] \times [0,1]$) equipped with lexicographic order topology if $X \in \{\mathbf{A}, \mathbf{O}\}$ for homeomorphism $f: X \to X$ we have $\operatorname{ent}_{\operatorname{set}}(f) \in \{0, +\infty\}$ moreover $\operatorname{ent}_{\operatorname{set}}(f) = 0$ if and only if f^4 is the identity map on X (where $\operatorname{ent}_{\operatorname{set}}(f)$ denotes set-theoretical entropy of f).

Keywords: Alexandroff square, lexicographic order, set-theoretical entropy.

1. Introduction

Several topologies have been introduced on unit square $[0,1] \times [0,1]$, like induced Euclidean topology, lexicographic order topology, Alexandroff square, etc.. In this text we consider $\mathbf{A} := [0,1] \times [0,1]$ under topology generated by basis consisting of [3]:

- $\{t\} \times (U \setminus \{t\})$ where $t \in [0,1]$ and U is an open subset of [0,1] (as a subset of real line **R**),
- ([0,1]\F)×U where F is a finite subset of [0,1] and U is an open subset of [0,1] (as a subset of real line **R**).

On the other hand several entropies have been introduced, e.g., topological entropy, algebraic entropy, adjoint entropy, set-theoretical entropy, etc.. Here we deal with set-theoretical entropy which has been introduced for the first time in [1]. For arbitrary set D, self-map $\lambda: D \to D$ and finite subset B of D the limit $h(B,\lambda) := \lim_{n \to \infty} \frac{|B \cup \lambda(B) \cup \cdots \cup \lambda^{n-1}(B)|}{n}$ exists (where |K| denotes the cardinality of finite set K). Define set-theoretical entropy of $\lambda: D \to D$ as $\sup\{h(F,\lambda): F$ is a finite subset of $D\}$ and denote it with $\operatorname{ent}_{\operatorname{set}}(\lambda)$. In this text we compute all possible set-theoretical entropies of homeomorphism on Alexandroff square \mathbf{A} .

Remark 1.1. For $\lambda: D \to D$, ent_{set} $(\lambda) = \sup\{n: \text{there} exist x_1, ..., x_n \in D \text{ such that } \{\lambda^k(x_1)\}_{k \ge 1}, ..., \{\lambda^k(x_n)\}_{k \ge 1}$ are *n* pairwise disjoint one-to-one sequences $\} \cup \{0\}$ [1]. Moreover for $t \ge 1$ we have ent_{set} $(\lambda^t) = t$ ent_{set} (λ) . **Convention 1.2.** Using the same notations as in [2], by $\langle x, y \rangle$ we mean ordered set $\{x, \{x, y\}\}$, and by (a, b) we mean open interval $\{z \in \mathbf{R} : a < z < b\}$, also in set $[0,1] \times [0,1]$, let $\Delta := \{\langle t, t \rangle : t \in [0,1]\}$ and:

$$\begin{split} \mathbf{P}_1 &:= < 0, 0 >, \mathbf{P}_2 := < 0, 1 >, \mathbf{P}_3 := < 1, 1 >, \mathbf{P}_4 := < 1, 0 >, \\ \mathbf{L}_1 &:= \{0\} \times (0, 1), \mathbf{L}_2 := (0, 1) \times \{1\}, \\ \mathbf{L}_3 &:= \{1\} \times (0, 1), \mathbf{L}_4 := (0, 1) \times \{0\}. \end{split}$$

2. Set-theoretical entropy of homeomorphisms of A

Lemma 2.1. For order preserving bijection $f:[0,1] \rightarrow [0,1]$ the following statements are equivalent:

- $ent_{set}(f) > 0$,
- $\operatorname{ent}_{\operatorname{set}}(f) = +\infty$,
- $f \neq id_{[0,1]}$,

i.e., ent_{set} $(f) \in \{0, +\infty\}$ and ent_{set} (f) = 0 if and only if $f = id_{[0,1]}$.

Proof. Suppose $f \neq \operatorname{id}_{[0,1]}$, then there exists $t \in [0,1]$ with $f(t) \neq t$, without any loss of generality we may suppose t < f(t) for $n \ge 1$ choose $t = x_1 < x_2 < \cdots < x_n < f(t)$, then $t = x_1 < x_2 < \cdots < x_n < f(t) = f(x_1) < f(x_2) < \cdots < f(x_n) < f^2(x_1) < f^2(x_2) < \cdots < f^2(x_n) < \cdots < f^2(x_n) < \cdots$ and the sequences $\{f^k(x_1)\}_{k\ge 1}, \dots, \{f^k(x_n)\}_{k\ge 1}$ are pairwise disjoint and one-to-one, so by Remark 1.1 we have ent_{set} $(f) \ge n$. Hence ent_{set} $(f) = +\infty$.

Remark 2.2. In Alexandroff square **A**, for homeomorphism $f : \mathbf{A} \to \mathbf{A}$ we have $f(\Delta) = \Delta$ also for all $t \in [0,1]$ there exists $s \in [0,1]$ such that $f(\{t\} \times [0,1]) = \{s\} \times [0,1]$ in addition $g:[0,1] \to [0,1]$ with $f < t, x \ge s, g(x) >$ is a homeomorphism. Moreover exactly one of the following conditions occurs [2]:

- $f(P_i) = P_i (i = 1, 2, 3, 4), f(L_1) = L_1, f(L_3) = L_3,$
- $f(P_1) = P_3$, $f(P_2) = P_4$, $f(P_3) = P_1$, $f(P_4) = P_2$, $f(L_1) = L_3$, $f(L_3) = L_1$.

Theorem 2.3. In Alexandroff square \mathbf{A} , for homeomorphism $f: \mathbf{A} \rightarrow \mathbf{A}$ the following statements are equivalent:

- $ent_{set}(f) > 0$,
- $\operatorname{ent}_{\operatorname{set}}(f) = +\infty$,
- $f^4 \neq \operatorname{id}_A$,

i.e., ent_{set} $(f) \in \{0, +\infty\}$ and ent_{set} (f) = 0 if and only if $f^4 = id_A$.

Proof. Suppose ent_{set} (f) > 0. By Remark 1.1, we have ent_{set} $(f^2) > 0$. Moreover considering homeomorphism $f^2: \mathbf{A} \to \mathbf{A}$ by Remark 2.2 we have $f^2(\mathbf{P}_i) = \mathbf{P}_i$ (i = 1,2,3,4), also $f^2|_{\Delta}: \Delta \to \Delta$ is a homeomorphism. Note that Δ as a subspace of \mathbf{A} has the same topology as a subspace of plane \mathbf{R}^2 . Considering homeomorphism $h: [0,1] \to \Delta$ with $h(t) = \langle t, t \rangle \langle t \in [0,1] \rangle$, we have homeomorphism $h^{-1} \circ f^2|_{\Delta} \circ h: [0,1] \to [0,1]$ with $(h^{-1} \circ f^2|_{\Delta} \circ h)(0) = (h^{-1} \circ f^2|_{\Delta})(\mathbf{P}_1) = h^{-1}(\mathbf{P}_1) = 0$ and $(h^{-1} \circ f^2|_{\Delta} \circ h)(1) = (h^{-1} \circ f^2|_{\Delta})(\mathbf{P}_3) = h^{-1}(\mathbf{P}_3) = 1$, so $h^{-1} \circ f^2|_{\Delta} \circ h: [0,1] \to [0,1]$ is an order preserving homeomorphism. Hence ent_{set} $(h^{-1} \circ f^2|_{\Delta} \circ h) \in \{0,+\infty\}$, by Lemma 2.1. We have the following cases:

- Case 1: $\operatorname{ent}_{\operatorname{set}}(h^{-1} \circ f^2 |_{\Delta} \circ h) = +\infty$. By [1] we have $\operatorname{ent}_{\operatorname{set}}(h^{-1} \circ f^2 |_{\Delta} \circ h) = \operatorname{ent}_{\operatorname{set}}(f^2 |_{\Delta}) \leq \operatorname{ent}_{\operatorname{set}}(f^2)$, so in this case $\operatorname{ent}_{\operatorname{set}}(f^2) = +\infty$ which leads to $\operatorname{ent}_{\operatorname{set}}(f) = +\infty$ by Remark 1.1.
- Case 2: $\operatorname{ent}_{\operatorname{set}}(h^{-1} \circ f^2 \mid_{\Delta} \circ h) = 0$. By Lemma 2.1, $h^{-1} \circ f^2 \mid_{\Delta} \circ h = \operatorname{id}_{[0,1]}$ thus $f^2 \mid_{\Delta} = \operatorname{id}_{\Delta}$. For all $t \in [0,1]$, by $f^2 < t, t \ge t, t >$ and Remark 2.2 $g_t : [0,1] \rightarrow [0,1]$ with $f^2 < t, x \ge t, g_t(x) >$ is a homeomorphism, hence $g_t^2 : [0,1] \rightarrow [0,1]$ is an order preserving homeomorphism and $\operatorname{ent}_{\operatorname{set}}(g_t^2) \in \{0,+\infty\}$, using Lemma 2.1, we have the following sub-cases:

• Sub-case 2-1: $\operatorname{ent}_{\operatorname{set}}(g_t^2) = 0$ for all $t \in [0,1]$. By Lemma 2.1 for all $t \in [0,1]$ in this sub-case we have $g_t^2 = \operatorname{id}_{[0,1]}$, thus for all $x \in [0,1]$ we have $f^4 < t, x \ge f^2 < t, g_t(x) \ge < t, g_t^2(x) \ge < t, x >$, so in this sub-case $f^4 = \operatorname{id}_A$.

• Sub-case 2-2: ent_{set} $(g_t^2) = +\infty$ for some $t \in [0,1]$. By Remark 1.1 for all $n \ge 1$ there exist $x_1, \dots, x_n \in [0,1]$ such that $\{g_t^{2k}(x_1)\}_{k\ge 1}, \dots, \{g_t^{2k}(x_n)\}_{k\ge 1}$ are npairwise disjoint one-to-one sequences, however for all $k \ge 1$ and $i \in \{1, \dots, n\}$ we have
$$\begin{split} f^{2k} < t, x_i >= < t, g_t^{2k}(x_i) > , \text{ thus} \\ \{ f^{2k} < t, x_1 > \}_{k \ge 1}, \dots, \{ f^{2k} < t, x_n > \}_{k \ge 1} \end{split}$$

are *n* pairwise disjoint one-to-one sequences, so ent_{set} $(f^2) \ge n$ which leads to ent_{set} $(f^2) = +\infty$ and ent_{set} $(f) = +\infty$ by Remark 1.1.

Using the above cases (and sub-cases) the proof is completed.

3. Set-theoretical entropy of homeomorphisms of lexicographic ordered unit square

Consider lexicographic order \leq on $[0,1] \times [0,1]$, such that for $\langle x, y \rangle, \langle z, w \rangle \in [0,1] \times [0,1]$, let $\langle x, y \rangle \leq \langle z, w \rangle$ " $x \langle z$ " or "x = z and $y \leq w$ ". Suppose $\mathbf{O} := [0,1] \times [0,1]$ equipped with lexicographic order topology. In this section we compute set-theoretical entropies of homeomorphisms on \mathbf{O} .

Remark 3.1. In homeomorphism $f: \mathbf{O} \to \mathbf{O}$ for all $t \in [0,1]$ there exists $s \in [0,1]$ such that $f(\{t\} \times [0,1]) = \{s\} \times [0,1]$ in addition $g: [0,1] \to [0,1]$ with $f < t, x \ge s, g(x) >$ is a homeomorphism. Moreover exactly one of the following conditions occurs [2]:

- $f(\mathbf{P}_i) = \mathbf{P}_i, f(\mathbf{L}_i) = \mathbf{L}_i (i = 1, 2, 3, 4), \text{ and } f: \mathbf{O} \to \mathbf{O} \text{ is order-preserving,}$
- $f(P_1) = P_3$, $f(P_2) = P_4$, $f(P_3) = P_1$, $f(P_4) = P_2$, $f(L_1) = L_3$, $f(L_2) = L_4$, $f(L_3) = L_1$, $f(L_4) = L_2$, and $f: \mathbf{O} \to \mathbf{O}$ is anti-order-preserving.

Theorem 3.2. For homeomorphism $f: \mathbf{O} \rightarrow \mathbf{O}$ the following statements are equivalent:

- $\operatorname{ent}_{\operatorname{set}}(f) > 0$,
- $\operatorname{ent}_{\operatorname{set}}(f) = +\infty$,
- $f^2 \neq id_0$,

i.e., ent_{set} $(f) \in \{0, +\infty\}$ and ent_{set} (f) = 0 if and only if $f^2 = id_0$.

Proof. Suppose ent_{set} (f) > 0. By Remark 1.1, we have ent_{set} $(f^2) > 0$. By Remark 3.1 for order-preserving homeomorphism $f^2: \mathbf{O} \to \mathbf{O}$ we have $f^2(\mathbf{P}_i) = \mathbf{P}_i$, $f^2(\mathbf{L}_i) = \mathbf{L}_i$ (i = 1,2,3,4). Using similar method described in the proof of Lemma 2.1 we have: ent_{set} $(f^2) \in \{0,+\infty\}$ and ent_{set} $(f^2) = 0$ if and only if $f^2 = \mathrm{id}_{\mathbf{O}}$. Use Remark 1.1 to complete the proof.

Example 3.3. Define $\varphi, \mu : [0,1] \rightarrow [0,1]$ with $\varphi(t) := 1 - t \ (t \in [0,1])$ and

$$\mu(t) := \begin{cases} 1 - 2t^2 & t \in [0, \frac{1}{2}], \\ \sqrt{\frac{1 - t}{2}} & t \in [\frac{1}{2}, 1], \end{cases}$$

also consider $f, g: [0,1] \times [0,1] \rightarrow [0,1] \times [0,1]$ with $f < s, t \ge \phi(s), \phi(t) >, g < s, t \ge \mu(s), \mu(t) >$ (for $< s, t \ge [0,1] \times [0,1]$). Then:

- $f, g: \mathbf{A} \to \mathbf{A}$ and $f, g: \mathbf{O} \to \mathbf{O}$ are homeomorphisms,
- $f^2 = g^2 = id_{[0,1] \times [0,1]}$ thus $ent_{set}(f) = ent_{set}(g) = 0$,
- $(g \circ f)^2(\frac{3}{4}) = \frac{31}{32}$ and $\operatorname{ent}_{\operatorname{set}}(g \circ f) = +\infty$ by Theorem 3.2.

References

- F. Ayatollah Zadeh Shirazi, D. Dikranjan, Settheoretical entropy: A tool to compute topological entropy, Proceedings ICTA 2011, Islamabad, Pakistan, July 4-10, 2011 (Cambridge Scientific Publishers), 2012, 11-32.
- [2] F. Ayatollah Zadeh Shirazi, F. Ebrahimifar, R. Yaghmaeian, H. Yahyaoghli, Possible heights of Alexandroff square transformation groups, arXiv:1810.01315v1 [math.GN].
- [3] L. A. Steen, J. A. Seebach, *Counterexamples in topology*, Holt, Rinehart and Winston, Inc., 1970.