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    ABSTRACT: Let 𝒮1 ∈ BL(X1) and 𝒮2 ∈ BL(X2) are a 

continuous linear operators and both have property (ao) 

then their tensor product has property (ao) if and only if 

the upper Weyl spectrum identity σ𝒮ℱ+
−(𝒮1⨂𝒮2) =

σ𝒮ℱ+
−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+

−(𝒮2)σ(𝒮1) holds true. Perturbations 

by quasi-nilpotent operators are considered. 

1. INTRODUCTION  

   We will postulate along this paper X is a Banach space 

and BL(X) refer to each a continuous linear operators on 

X. For 𝒮 ∈  BL(X), let σ(𝒮), σa(𝒮) and iso σ(𝒮)denote 

respectively the spectrum, the approximate point spectrum 

and isolated points of σ(𝒮). Let  α(𝒮) refer to the nullity 

of 𝒮 defined by α(𝒮) = dim ker( S) and  β(𝒮) refer to the 

deficiency of 𝒮  defined by  β(𝒮) = codim S(X). If 

nullity of 𝒮 is finite and rang of 𝒮 (ℜ(S)) is closed then 

𝒮 is called an upper semi-Fredholm operator and if 

deficiency of 𝒮 is finite then 𝒮 is a lower semi-Fredholm 

operator.  

    In the complete φ+( X) (resp. φ−( X) ) denote the set of 

all upper (resp. lower) semi-Freadholm operators on X. A 

continuous linear operator 𝒮 is either upper or lower semi-

Fredholm then 𝒮 is semi-Fredholm (symbolizes φ+
−( X) ). 

While 𝒮 is called a Freadholm operator (symbolizes 

φ(X)) if nullity and deficiency of 𝒮 are finite. Now we 

can introduce the definition of an upper Weyl spectrum of  

σ𝒮ℱ+
−(𝒮) = {η ∈ ℂ: 𝒮 − η ∉ φ+

−( X)}. ind(𝒮) pointing to 

the index of 𝒮 and defined as follows ind(𝒮) = α(𝒮) −
β(𝒮). The ascent of  𝒮 ∈  BL(X) is littlest non-negative 

integer 𝓅 = 𝓅(𝒮) such that ker 𝒮𝓅 = ker 𝒮𝓅+1, if there is 

not such integer then ker 𝒮𝓅 ≠ ker 𝒮𝓅+1 for each 𝓅, then 

𝓅(𝒮) is infinite. And the descent of an operator 𝒮 is 

littlest non-negative integer  𝓆 = 𝓆(𝒮) such that 𝒮𝓆(X) =
𝒮𝓆+1(X), if there is not such integer 𝒮𝓆(X) ≠ 𝒮𝓆+1(X) for 

each 𝓆 then 𝓆(𝒮) is infinite. According to [1], the ascent 

and the descent are equal if 𝓅(𝒮) and 𝓆(𝒮) are finite.  

    A continuous linear operator 𝒮 ∈  BL(X)  is Weyl if 𝒮 

is Fredholm of index zero, whilst is said to be Browder if 

𝒮 ∈ φ(X) and 𝓅(𝒮), 𝓆(𝒮) are finite. The Weyl,  Browder 

and Browder approximate point spectrum define as 

follows  

σW(𝒮) = {η ∈ ℂ: 𝒮 − η is not Weyl}, 
σb(𝒮) = {η ∈ ℂ: 𝒮 − η is not Browder}, 

σab(𝒮) = {η ∈ σa(𝒮): η ∉ φ+(𝒜 )and 𝓅(𝒮 − η) = ∞}. 

     An operator 𝒮 ∈  BL(X)  is satisfies Weyl's Theorem if 

σ(𝒮)\σW(𝒮) = Ε0(𝒮) and satisfies Browder's Theorem if 

σ(𝒮)\σW(𝒮) = Π0(𝒮) where Ε0(𝒮) is the eigenvalue of 

finite multiplicity and Π0(𝒮) is poles of 𝒮. We can say 

also a-Weyl's Theorem holds for 𝒮 if σa(𝒮)\σ𝒮ℱ+
−(𝒮) =

Εa
0(𝒮) and a-Browder's Theorem holds for 𝒮 if σa(𝒮)\

σ𝒮ℱ+
−(𝒮) = Πa

0( 𝒮) where Εa
0(𝒮) an eigenvalue of  𝒮 of 

finite multiplicity that isolated in approximate point 

spectrum of 𝒮 and Πa
0( 𝒮) is left poles of 𝒮 of finite rank.  

     And we continuous to narrate the theories, but before 

this we will impose n is non-negative integer and  

𝒮 ∈  BL(X) define 𝒮[n] to be restriction of 𝒮 to ℜ(𝒮n) are 

seen as a map from ℜ(𝒮n)  into ℜ(𝒮n), [special case 

𝒮[0] = 𝒮 ]. For some integer n, if the rang space ℜ(𝒮n) is 

closed and 𝒮[n] is an upper semi- Fredholm operator, then 

𝒮 is said to be upper semi B-Fredholm, while if the rang 

space ℜ(𝒮n) is closed and 𝒮[n] is a lower semi-Fredholm 

operator, then 𝒮 is called lower semi B −Fredholm. The 

index of 𝒮 is defined as the index of operator.  

    For 𝒮 ∈  BL(X), is called B −Weyl if it a B −Fredholm 

operator of index zero, and so B −Weyl spectrum of 𝒮 is 

defined by σBw(𝒮) = {η ∈ ℂ: 𝒮 − η is not B − Weyl}. So 

we can say that an operator 𝒮 achieves generalized Weyl's 

Theorem if σ(𝒮)\σBw(𝒮) = Ε(𝒮), and achieves 

generalized Browder's Theorem if σ(𝒮)\σBw(S) = Π(𝒮), 

where Ε(S) is an eigenvalue of 𝒮 that are isolated in 

spectrum of 𝒮 and Π(S) is a poles of resolvent of S. The 

class of all upper semi B −Fredholm operators we will 

signal to him 𝒮ℬℱ+(X) whereas 𝒮ℬℱ+
−(X) = { η ∈

 𝒮ℬℱ+(X): ind(𝒮) ≤ 0}, thus it will be defined the upper 

B −Weyl spectrum is σ𝒮ℬℱ+
−(𝒮) = {η ∈ ℂ: 𝒮 − η ∉

𝒮ℬℱ+
−(X)}. Hence after definition upper  B −Weyl 

spectrum we call recall generalized a-Weyl's Theorem and 

generalized a-Browder's Theorem alternately, , σa(𝒮)\ 

σ𝒮ℬℱ+
−(𝒮) = Εa(𝒮) and σa(𝒮)\ σ𝒮ℬℱ+

−(𝒮) = Πa(𝒮), 

where Εa(𝒮) is an eigenvalue of 𝒮 that are isolated in 

approximate point  spectrum of 𝒮 and Πa(𝒮) is a left 

poles of 𝒮. Remain to mention the definition of  Drazin 

spectrum and left Drazin invertible spectrum, if 𝒮 has 

finite ascent and descent then 𝒮 is called Drazin 

invertible, the Drazin spectrum σD(𝒮) = {η ∈ ℂ: 𝒮 −
η is not a Drazin invertible}. An operator 𝒮 is called left 

Drazin invertible ( in symbol LD(X)), if LD(X) = {𝒮 ∈

 BL(X): 𝓅(𝒮) < ∞ and ℜ(𝒮𝓅(𝒮)+1) is closed}, and left 

Drazin invertible spectrum is defined by σLD(𝒮) =
{η ∈ ℂ: 𝒮 − η ∉ LD(X)}.   

     Recall that a continuous linear operator 𝒮 ∈
 BL(X), has single valued extension property at a 

point η0 ∈ ℂ ( Shortly 𝒮𝒱ℰ𝒫), if for every open disc 

𝒰 centered at η0 then only analytic function f: 

𝒰 ⟶ 𝒜 satisfying (𝒮 − η)f(η) = 0 is the function 

f≡ 0. Evidently, 𝒮 has 𝒮𝒱ℰ𝒫 at every isolated point 

of the spectrum, consequently, note that the single 

valued extension property plays an important role in 

Fredholm and spectral Theory.  

     We postulate that 𝒮1 ∈ BL(X1) and 𝒮2 ∈ BL(X2), 

the tenors product of two operators  𝒮1and 𝒮2 on 

X1⨂X2 is the operator 𝒮1⨂𝒮2 defined by 

(𝒮1⨂𝒮2) ∑ x1i⨂x2ii = ∑ 𝒮1x1i⨂𝒮2x2ii  for all 

∑ x1i⨂x2ii ∈ X1⨂X2. [6,8], if 𝒮1 and 𝒮2 satisfy 

Browder's Theorem then 𝒮1⨂𝒮2 satisfies Browder's 

Theorem if and only if the Weyl spectrum identity 

σw(𝒮1⨂𝒮2) = σw(𝒮1)σ(𝒮2) ∪ σw(𝒮2)σ(𝒮1) holds, 

and if 𝒮1 and 𝒮2 satisfy a-Browder's Theorem then 

𝒮1⨂𝒮2 satisfies a-Browder's Theorem if and only if 
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the upper Weyl spectrum identity  σ𝒮ℱ+
−(𝒮1⨂𝒮2) =

σ𝒮ℱ+
−(𝒮1)σa(𝒮2)⋃σ𝒮ℱ+

−(𝒮2)σa(𝒮1) holds.       

   2. Property (𝐚𝐨) and tensor       product 
    The most important findings of this paper is, if  

𝒮1 ∈ BL(X1) and 𝒮2 ∈ BL(X2) have  property (ao) 

then 𝒮1⨂𝒮2 has property (ao) if and only if the 

upper Weyl spectrum identity  σ𝒮ℱ+
−(𝒮1⨂𝒮2) =

σ𝒮ℱ+
−(𝒮1)σ(𝒮2) ∪ σ𝒮ℱ+

−(𝒮2)σ(𝒮1) holds, also study 

perturbation under a quasi-nilpotent operator for 

these royalty, this is part of the study,      While the 

other is assume that 𝒮1 ∈ BL(X1) and 𝒮2 ∈ BL(X2)  

are polaroid and 𝒮1
∗, 𝒮2

∗ have 𝒮𝒱ℰ𝒫 then 𝒮1⨂𝒮2 

has property (SZ), and study perturbation by 

commutator a quasi-nilpotent operator for property 

(SZ). The following lemmas help to reach the 

desired results: [1, Theorem 3.23], If  𝒮 ∈ BL(X) has 

𝒮𝒱ℰ𝒫 at η ∈ σ(𝒮)\σ𝒮ℱ+
(𝒮) then η ∈ iso σa(𝒮) and 

𝓅(𝒮 − η) < ∞. From [4] and [11] we get the 

following results 

i-  σx(𝒮1⨂𝒮2) = σx(𝒮1)σx(𝒮2), where σx = σ or 

σx = σa, 

ii −   σ𝒮ℱ+
(𝒮1⨂𝒮2) =

σ𝒮ℱ+
(𝒮1)σa(𝒮2)⋃σ𝒮ℱ+

(𝒮2)σa(𝒮1), 

iii − σ𝒮ℱ−
(𝒮1⨂𝒮2) =

σ𝒮ℱ−
(𝒮1)σδ(𝒮2)⋃σ𝒮ℱ+

(𝒮2)σδ(𝒮1). 

   and proposition 3 in [12], we obtain 

iso σ(𝒮1⨂𝒮2) ⊂ iso σ(𝒮1) iso σ(𝒮2). 

    Lemma 2.1 Let 𝒮1, 𝒮2 are a continuous linear 

operators in BL(X1) and BL(X2) respectively, then 

0 ∉ σ(𝒮1⨂𝒮2)\  σ𝒮ℱ+
(𝒮1⨂𝒮2). 

     proof: We assume that 0 ∈ σ(𝒮1⨂𝒮2) that is 

𝒮1⨂𝒮2 is not invertible and therefore 0 ∈
iso σ(𝒮1⨂𝒮2) and from [1, Theorem 3.18], 𝒮1⨂𝒮2 

has 𝒮𝒱ℰ𝒫. And 0 ∉   σ𝒮ℱ+
(𝒮1⨂𝒮2), so that 𝒮1⨂𝒮2 

has closed rang and 0 < α(𝒮1⨂𝒮2) < ∞. Since 

𝒮1⨂𝒮2 is surjective and has 𝒮𝒱ℰ𝒫 then 𝒮1⨂𝒮2 is 

injective [1, corollary 2.24], consequently 𝒮1and 𝒮2 

are injective if and only if 𝒮1⨂𝒮2 is injective, we 

obtain α(𝒮1) > 0 or α(𝒮2) > 0. But α(𝒮1⨂𝒮2) is 

infinite, this leads to a discrepancy 

Lemma 2.2  Let 𝒮1 ∈ BL(X1) and 𝒮2 ∈ BL(X2), 

then                                         σ𝒮ℱ+
−(𝒮1⨂𝒮2) ⊆

σ𝒮ℱ+
−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+

−(𝒮2)σ(𝒮1) 

                                                          ⊆
σab(𝒮1)σ(𝒮2)⋃σab(𝒮2)σ(𝒮1) = σab(𝒮1⨂𝒮2). 

    Proof: The inclusion 

σ𝒮ℱ+
−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+

−(𝒮2)σ(𝒮1) ⊆

σab(𝒮1)σ(𝒮2)⋃σab(𝒮2)σ(𝒮1) verified because 

σ𝒮ℱ+
−(𝒮) ⊆ σab(𝒮) for all operator 𝒮. Now we must 

prove that 

σ𝒮ℱ+
−(𝒮1⨂𝒮2) ⊆ σ𝒮ℱ+

−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+
−(𝒮2)σ(𝒮1), let 

η ∉ σ𝒮ℱ+
−(𝒮1)σ(𝒮2)  ⋃σ𝒮ℱ+

−(𝒮2)σ(𝒮1) as 

σ𝒮ℱ+
(𝒮1⨂𝒮2) ⊆ σ𝒮ℱ+

−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+
−(𝒮2)σ(𝒮1) 

implies that η ≠ 0. Presume η = 𝒽ℓ be any 

factorization of η, we obtain 𝒽 ∈ σ(𝒮1) and ℓ ∈ σ(𝒮2) 

and therefor 𝒽 ∈ σ(𝒮1)\σ𝒮ℱ+
−(𝒮1) and ℓ ∈

σ(𝒮2)\σ𝒮ℱ+
−(𝒮2). Then 𝒽 ∈ φ+(𝒮1), ind (𝒮1 − 𝒽) ≤

0, and ℓ ∈ φ+(𝒮2), ind (𝒮2 − ℓ) ≤ 0. Consequently, 

η ∉ σ𝒮ℱ+
(𝒮1⨂𝒮2). The following requirement is 

proven ind(𝒮1⨂𝒮2 −  η) ≤ 0, assume ind(𝒮1⨂𝒮2 −
 η) > 0, then α(𝒮1⨂𝒮2 −  η) < ∞ and so β(𝒮1⨂𝒮2 −

 η) < ∞ thus η ∈ φ(𝒮1⨂𝒮2). Let Λ = {(𝒽i, ℓi)i=1
p

∈
σ(𝒮1)σ(𝒮2): 𝒽iℓi = η}, where Λ is a finite set. And 

calculate ind(𝒮1⨂𝒮2 −  η) we will use Theorem 3.5 in 

[10], whereas ind(𝒮1⨂𝒮2 −  η) = ∑ ind(𝒮1 −
p
j=n+1

𝒽j) dim H0 (𝒮2 − ℓj) +

∑ ind(𝒮2 − ℓj) dim H0
n
j=1 (𝒮1 − 𝒽j), since ind(𝒮1 −

𝒽i) and ind(𝒮2 − ℓi) are non-positive, This is 

competitive. And so ind(𝒮1⨂𝒮2 −  η) ≤ 0 thus 

η ∉  σ𝒮ℱ+
−(𝒮1⨂𝒮2).  

    Rest to prove 

 σab(𝒮1⨂𝒮2) = σab(𝒮1)σ(𝒮2)⋃σab(𝒮2)σ(𝒮1). Let 

η ∉  σab(𝒮1⨂𝒮2) then η ∈ φ+(𝒮1⨂𝒮2) and 

𝓅(𝒮1⨂𝒮2 −  η) < ∞ implies that η ∈ iso σ(𝒮1⨂𝒮2). 

For all factorization η = 𝒽ℓ of η such that 𝒽 ∈ σ(𝒮1) 

and ℓ ∈ σ(𝒮2) that is 𝒽 ∈ φ+(𝒮1) and ℓ ∈ ϕ+(𝒮2). 

As iso σ(𝒮1⨂𝒮2) ⊂ iso σ(𝒮1) iso σ(𝒮2), then 𝒮1 has 

𝒮𝒱ℰ𝒫 at 𝒽 and 𝒮2 has 𝒮𝒱ℰ𝒫 at ℓ. Thus we have 

𝓅(𝒮1 − 𝒽) < ∞ and 𝓅(𝒮2 − ℓ) < ∞, therefore 

𝒽 ∉  σab(𝒮1) and ℓ ∉  σab(𝒮2) and so η ∉
σab(𝒮1)σ(𝒮2)⋃σab(𝒮2)σ(𝒮1). 

    We postulated 

η ∉ σab(𝒮1)σ(𝒮2)⋃σab(𝒮2)σ(𝒮1), since η ≠ 0for 

any factorization η = 𝒽ℓ of η such that 𝒽 ∈ σ(𝒮1), 

ℓ ∈ σ(𝒮2) and 𝒽 ∉  σab(𝒮1), ℓ ∉  σab(𝒮2), then 

𝒽 ∈ φ+(𝒮1), 𝓅(𝒮1 − 𝒽) < ∞ and ℓ ∈ φ+(𝒮2), 

𝓅(𝒮2 − ℓ) < ∞, implies that η ∈ φ+(𝒮1⨂𝒮2) and 

𝒽 ∈ iso σ(𝒮1), ℓ ∈ isoσ (𝒮2), that is η ∈
iso σ(𝒮1⨂𝒮2). It follows that η ∈ φ+(𝒮1⨂𝒮2) and 

𝓅(𝒮1⨂𝒮2 −  η) < ∞. Hence η ∉ σab(𝒮1⨂𝒮2). So 

we get the result.    

    Definition 2.3 [3] A continuous linear operator 

𝒮 ∈ ℒ(𝒜) is said to have property (ao) if σ(𝒮)\
σ𝒮ℱ+

−(𝒮) = Πa(𝒮).  

    Proposition 2.4 Let 𝒮 be a continuous linear 

operators that the following are equivalent for 𝒮 

i- property (ao)holds for 𝒮, 

ii- σab(𝒮) = σ𝒮ℱ+
−(𝒮). 

    Proof: For every operators 𝒮, σ𝒮ℱ+
−(𝒮) ⊆

σab(𝒮). Let η ∈ σ(𝒮)\σ𝒮ℱ+
−(𝒮), since property 

(ao) holds for 𝒮 then η ∈ Πa(𝒮). But by Theorem 

[3], property (Sab) holds for 𝒮 then η ∈ Πa
0( 𝒮) 

while that Πa
0( 𝒮) = σa(𝒮)\σab(𝒮). Therefore 

σab(𝒮) ⊆ σ𝒮ℱ+
−(𝒮). 

   Reciprocally, let η ∈ Πa(𝒮), that is η ∈ σa(𝒮) 

and η ∉ σLD(𝒮). But σa(𝒮) ⊆ σ(𝒮) and σ𝒮ℱ+
−(𝒮) ⊆

σLD(𝒮), then we get η ∈ σ(𝒮) and η ∉ σ𝒮ℱ+
−(𝒮). 

Thus η ∈ σ(𝒮)\σ𝒮ℱ+
−(𝒮). Now, let η ∈

σ(𝒮)\σ𝒮ℱ+
−(𝒮). Since σab(𝒮) = σ𝒮ℱ+

−(𝒮) then 

property (az) holds for 𝒮 and therefore η ∈ Πa
0( 𝒮). 

As Πa
0( 𝒮) ⊆ Π( 𝒮), then η ∈ Πa(𝒮). Consequently, 

property (ao) holds for 𝒮.  

    The following Theorem proves that the above 

lemma validates for two directions if we add the 
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condition 𝒮1 has property (ao) and 𝒮2 has property 

(ao).   

    Theorem 2.5 Suppose that 𝒮1 ∈ BL(X1),and  

𝒮2 ∈ BL(X2), and both have property (ao), then 

𝒮1⨂𝒮2 has property (ao) if and only if 

 σ𝒮ℱ+
−(𝒮1⨂𝒮2) = σ𝒮ℱ+

−(𝒮1)σ(𝒮2) ∪ σ𝒮ℱ+
−(𝒮2)σ(𝒮1). 

    Proof: We assume that 𝒮1⨂𝒮2 has property 

(ao)then by above lemma we get the result. 

Reciprocally, Since 𝒮1, 𝒮2 has property (ao) then 

σab(𝒮1) = σ𝒮ℱ+
−(𝒮1), σab(𝒮2) = σ𝒮ℱ+

−(𝒮2). 

According to the hypothesis  

  σ𝒮ℱ+
−(𝒮1⨂𝒮2) = σ𝒮ℱ+

−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+
−(𝒮2)σ(𝒮1)  

                            = σab(𝒮1)σ(𝒮2)⋃σab(𝒮2)σ(𝒮1) =
σab(𝒮1⨂𝒮2), thus 𝒮1⨂𝒮2 has property (ao). 

    Theorem 2.6 Let 𝒮1 and 𝒮2 have property (ao). 

Then   σ𝒮ℱ+
−(𝒮1⨂𝒮2) = 

σ𝒮ℱ+
−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+

−(𝒮2)σ(𝒮1) if and only if 𝒮1 

has 𝒮𝒱ℰ𝒫 at every points 𝒽 ∈ φ+(𝒮1)and 𝒮2 has 

𝒮𝒱ℰ𝒫 at every points ℓ ∈ ϕ+(𝒮2) such that 

0 ≠ η = 𝒽ℓ ∈ σ(𝒮1⨂𝒮2)\  σ𝒮ℱ+
−(𝒮1⨂𝒮2). 

    Proof: We assume that η ∈ σ(𝒮1⨂𝒮2)\
  σ𝒮ℱ+

−(𝒮1⨂𝒮2) then η ∈ σ(𝒮1⨂𝒮2)\  σab(𝒮1⨂𝒮2), 

because 𝒮1 and 𝒮2 have property (ao). For every 

factorization 0 ≠ η = 𝒽ℓ of η such that 𝒽 ∈ σ(𝒮1) 

and ℓ ∈ σ(𝒮2), we have 𝒽 ∈ φ+(𝒮1) and ℓ ∈
φ+(𝒮2) And consequently 𝓅(𝒮1 − 𝒽) < ∞ and 

𝓅(𝒮2 − ℓ) < ∞. It leads to 𝒮1 has 𝒮𝒱ℰ𝒫 at 𝒽 and 

𝒮2 has 𝒮𝒱ℰ𝒫 at ℓ. 

    Reciprocally, we must prove that 

  σ𝒮ℱ+
−(𝒮1⨂𝒮2) = σ𝒮ℱ+

−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+
−(𝒮2)σ(𝒮1). 

Enough to prove that 

σab(𝒮1⨂𝒮2) ⊆   σ𝒮ℱ+
−(𝒮1⨂𝒮2). Let η ∈

σ(𝒮1⨂𝒮2)\  σ𝒮ℱ+
−(𝒮1⨂𝒮2) then η ∈ φ+(𝒮1⨂𝒮2) 

and ind(𝒮1⨂𝒮2) ≤ 0. Hence for every factorization 

0 ≠ η = 𝒽ℓ of η where 𝒽 ∈ σ(𝒮1) and ℓ ∈ σ(𝒮2), 

and  𝒽 ∈ φ+(𝒮1), ℓ ∈ φ+(𝒮2). Since 𝒮1 has 𝒮𝒱ℰ𝒫 

at 𝒽 and 𝒮2 has 𝒮𝒱ℰ𝒫 at ℓ then 𝓅(𝒮1 − 𝒽) < ∞ 

and 𝓅(𝒮2 − ℓ) < ∞. Therefore 𝒽 ∉ σab(𝒮1) and 

ℓ ∉ σab(𝒮2). Thus η ∉ σab(𝒮1⨂𝒮2).   

    Theorem 2.7 Let  𝒮1 and 𝒮2 be continuous linear 

operator in BL(X1) and  BL(X2) respectively. If 𝒮1
∗ 

and 𝒮2
∗ have 𝒮𝒱ℰ𝒫 then 𝒮1⨂𝒮2 has property (ao). 

      Proof: As 𝒮1
∗ and 𝒮2

∗ have 𝒮𝒱ℰ𝒫 then satisfy 

generalized a-Browder Theorem and consequently 

𝒮1, 𝒮2 satisfy a-Browder Theorem. Then by 

Theorem 1 in [8], a-Browder Theorem holds for 

𝒮1⨂𝒮2, Thus σab(𝒮1⨂𝒮2) =  σ𝒮ℱ+
−(𝒮1⨂𝒮2). It 

leads to property (ao)holds for 𝒮1⨂𝒮2. 

    Theorem 2.8 Let 𝒮1 ∈ BL(X1) and 𝒮2 ∈ BL(X2), If 

𝒮1 and 𝒮2 have 𝒮𝒱ℰ𝒫 then  𝒮1
∗⨂𝒮2

∗ has property 

(ao).   

    Proof: As  𝒮1 and 𝒮2 have 𝒮𝒱ℰ𝒫 then we obtain 

by [1, corollary 3.73], 𝒮1
∗ and 𝒮2

∗ obey a-Browder 

Theorem. Consequently, 𝒮1
∗⨂𝒮2

∗ obey a-Browder 

Theorem. That is  

σab(𝒮1
∗⨂𝒮2

∗) = σ𝒮ℱ+
−(𝒮1

∗⨂𝒮2
∗). Evidently, 

𝒮1
∗⨂𝒮2

∗ obey property (ao). 

    Duggal in [5, 9]defined the polaroid operator as 

follows, if every isolated point of the spectrum of  

𝒮 is the pole of resolvent  of  𝒮, also η is pole of 

resolvent of 𝒮 if and only if 0 <  𝓅(𝒮 − η) =
𝓆(𝒮 − η) < ∞. Or equivalent, an operator 𝒮 ∈
BL(X) is called polaroid if and only if there exists 

d = d(η) ∈ ℕ such that H0(𝒮 − η) =
ker(𝒮 − η)−1, for all η ∈ isoσ(𝒮). Where H0(𝒮 −
η) is a quasi-nilpotent  part of 𝒮 ∈ BL(X)define as 

follows H0(𝒮 − η) = {a ∈ X: limn→∞ ∥

(𝒮 − η)na ∥
1

n = 0}.  

    Definition 2.9 [3]  A continuous linear operator 

𝒮 ∈ BL(X)is said to have property (SZ) if σ(𝒮)\
σ𝒮ℱ+

−(𝒮) = Ε(𝒮).  

    Theorem 2.10 Let 𝒮1 ∈ BL(X1) and 𝒮2 ∈
BL(X2) are polaroid. If 𝒮1

∗ and 𝒮2
∗ have 𝒮𝒱ℰ𝒫 

then 𝒮1⨂𝒮2 has property (SZ). 

Proof: Let's start with the imposition 𝒮1
∗ and 𝒮2

∗ 

have 𝒮𝒱ℰ𝒫, then we have  

σW(𝒮1) = σ𝒮ℱ+
−(𝒮1) =  σBw(𝒮1) 

σW(𝒮2) = σ𝒮ℱ+
−(𝒮2) =  σBw(𝒮2), 

also we have 𝒮1, 𝒮2 and 𝒮1⨂𝒮2 satisfies Browder's 

Theorem, thus  

σb(𝒮1⨂𝒮2) = σW(𝒮1⨂𝒮2)
= σW(𝒮1)σ(𝒮2)⋃σW(𝒮2)σ(𝒮1) 

                            
= σBw(𝒮1)σ(𝒮2)⋃σBw(𝒮2)σ(𝒮1)
= σBw(𝒮1⨂𝒮2) 

                                  =
σ𝒮ℱ+

−(𝒮1)σ(𝒮2)⋃σ𝒮ℱ+
−(𝒮2)σ(𝒮1) =   σ𝒮ℱ+

−(𝒮1⨂𝒮2). 

    As 𝒮1 and 𝒮2 are polaroid implies that 𝒮1⨂𝒮2 is 

polaroid [6, Lemma 2], and consequently Weyl's 

Theorem holds for 𝒮1⨂𝒮2. From [7, Theorem 

3.17], generalized Weyl Theorem holds for 𝒮1⨂𝒮2, 

thus σ(𝒮1⨂𝒮2)\σBw(𝒮1⨂𝒮2) = σ(𝒮1⨂𝒮2)\
σ𝒮ℱ+

−(𝒮1⨂𝒮2) = Ε(𝒮1⨂𝒮2). Plainly, 𝒮1⨂𝒮2 has 

property (SZ). 

       Theorem 2.11 Let 𝒮1 ∈ BL(X1) and 𝒮2 ∈
BL(X2) are polaroid. If 𝒮1 and 𝒮2 have 𝒮𝒱ℰ𝒫 then 

𝒮1
∗⨂𝒮2

∗ has property (SZ).  

    Proof: We assume that 𝒮1 and 𝒮2 have 𝒮𝒱ℰ𝒫, 

then we have from [1, corollary 2.5], [1, corollary 

3.53], [2, Theorem 2.20]  

σW(𝒮1
∗) = σ𝒮ℱ+

−(𝒮1
∗) =  σBw(𝒮1

∗) 

σW(𝒮2
∗) = σ𝒮ℱ+

−(𝒮2
∗) =  σBw(𝒮2

∗), 

also we have 𝒮1
∗, 𝒮2

∗ and 𝒮1
∗⨂𝒮2

∗ satisfies a-

Browder's Theorem and therefore Browder's 

Theorem , thus   

σb(𝒮1
∗⨂𝒮2

∗) = σW(𝒮1
∗⨂𝒮2

∗)
= σW(𝒮1

∗)σ(𝒮2
∗)⋃σW(𝒮2

∗)σ(𝒮1) 

                            
= σBw(𝒮1

∗)σ(𝒮2
∗)⋃σBw(𝒮2

∗)σ(𝒮1
∗)

= σBw(𝒮1
∗⨂𝒮2

∗) 

                                  =
σ𝒮ℱ+

−(𝒮1
∗)σ(𝒮2

∗)⋃σ𝒮ℱ+
−(𝒮2

∗)σ(𝒮1
∗) =

  σ𝒮ℱ+
−(𝒮1

∗⨂𝒮2
∗). 

    As 𝒮1
∗ and 𝒮2

∗ are polaroid implies that 𝒮1
∗⨂𝒮2

∗ 

is polaroid [6, Lemma 2], and consequently Weyl's 
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Theorem holds for 𝒮1
∗⨂𝒮2

∗. From [7, Theorem 

3.17], generalized Weyl Theorem holds 

for 𝒮1
∗⨂𝒮2

∗, thus σ(𝒮1
∗⨂𝒮2

∗)\σBw(𝒮1
∗⨂𝒮2

∗) =
σ(𝒮1

∗⨂𝒮2
∗)\σ𝒮ℱ+

−(𝒮1
∗⨂𝒮2

∗) = Ε(𝒮1
∗⨂𝒮2

∗). 

Plainly, 𝒮1
∗⨂𝒮2

∗ has property (SZ). 

     3. PERTURBATIONS 

    Assume [𝒬, 𝒮] = 𝒬𝒮 − 𝒮𝒬 refer to the 

commutator of operators 𝒬, 𝒮 ∈ BL(X). We assume 

that 𝒬1, 𝒬2  in BL(X1) and BL(X2) respectively, are 

a quasi-nilpotent operators [𝒬1, 𝒮1] = [𝒬2, 𝒮2] = 0 

for some operators 𝒮1 ∈ BL(X2) and 𝒮2 ∈ BL(X2), 

hence (𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2) = (𝒮1⨂𝒮2) + 𝒬, such 

that 𝒬 = 𝒮1⨂𝒬1 + 𝒮2⨂𝒬2 + 𝒬1⨂𝒬2 ∈
BL(X1⨂X2) is a quasi-nilpotent operator. 

Remember the definition of isoloid operator, 

𝒮 ∈ BL(X), is isoloid if iso σ(𝒮) = Ε(𝒮).  

    Proposition 3.1 Suppose that 𝒮 ∈ B(X) be a 

polaroid operator then Ε(𝒮) = Π(𝒮). 

    Proof: As always we have Π(𝒮) ⊆ Ε(𝒮), for 

every operators 𝒮. Now, let η ∈ Ε(𝒮) that is 

η ∈ iso σ(𝒮), since 𝒮 is a polaroid then η ∈ Π(𝒮). 

Therefore Ε(𝒮) = Π(𝒮).  

Theorem 3.2 Suppose that 𝒬1, 𝒬2  in BL(X1) and 

BL(X2) respectively, be a quasi-nilpotent operators 

[𝒬1, 𝒮1] = [𝒬2, 𝒮2] = 0 for some operators 

𝒮1 ∈ BL(X1)  and 𝒮2 ∈ BL(X2). If 𝒮1⨂𝒮2 polaroid 

then property (ao) holds for 𝒮1⨂𝒮2 implies 

(𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2) satisfies property (ao).  

    Proof: Observe that  σ(𝒮1⨂𝒮2) = σ((𝒮1 +

𝒬1)⨂(𝒮2 + 𝒬2)), σ𝒮ℱ+
−(𝒮1⨂𝒮2) = σ𝒮ℱ+

−((𝒮1 +

𝒬1)⨂(𝒮2 + 𝒬2)), and that the perturbation of an 

operator by commuting quasi-nilpotent has  𝒮𝒱ℰ𝒫 

if and only if the operator has 𝒮𝒱ℰ𝒫. If property 

(SZ) holds for 𝒮1⨂𝒮2, hence   

σ(𝒮1⨂𝒮2)\σ𝒮ℱ+
−(𝒮1⨂𝒮2) = Πa(𝒮1⨂𝒮2) 

 σ((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2))\σ𝒮ℱ+
−((𝒮1 +

𝒬1)⨂(𝒮2 + 𝒬2)) = Πa(𝒮1⨂𝒮2),   

we ought prove that Πa(𝒮1⨂𝒮2) =  Πa((𝒮1 +

𝒬1)⨂(𝒮2 + 𝒬2)). Let η ∈ Πa(𝒮1⨂𝒮2), it leads to 

η ∈ σ((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)) and η ∈

σ𝒮ℱ+
−((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)), also η ∈

iso σ(𝒮1⨂𝒮2). Clearly, if η ∈ iso σ(𝒮1⨂𝒮2) hence 

𝒮1
∗⨂𝒮2

∗ has 𝒮𝒱ℰ𝒫 at η and therefore 

Πa(𝒮1⨂𝒮2) = Π(𝒮1⨂𝒮2),also we have (𝒮1
∗ +

𝒬1
∗)⨂(𝒮2

∗ + 𝒬2
∗) has 𝒮𝒱ℰ𝒫 at η, Implies that 

η ∈ iso σ((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)). Since 𝒮1⨂𝒮2 be 

a polaroid it leads to 𝒮1⨂𝒮2 an isoloid then 

η ∈ Ε((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)), consequently by 

above proposition we get η ∈ Π((𝒮1 + 𝒬1)⨂(𝒮2 +

𝒬2)). Therefore, (𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2) satisfies 

property (ao).  

    Theorem 3.3 Suppose that 𝒬1, 𝒬2  in BL(X1) 

and BL(X2) respectively, be a quasi-nilpotent 

operators [𝒬1, 𝒮1] = [𝒬2, 𝒮2] = 0 for some 

operators 𝒮1 ∈ BL(X1)  and 𝒮2 ∈ BL(X2). If 𝒮1⨂𝒮2 

isoloid then property (SZ) holds for 𝒮1⨂𝒮2 implies 

(𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2) satisfies property (SZ).  

      Proof: Observe that  σ(𝒮1⨂𝒮2) =

σ((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)), σ𝒮ℱ+
−(𝒮1⨂𝒮2) =

σ𝒮ℱ+
−((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)), and that the 

perturbation of an operator by commuting quasi-

nilpotent has  𝒮𝒱ℰ𝒫 if and only if the operator has 

𝒮𝒱ℰ𝒫. If property (SZ) holds for 𝒮1⨂𝒮2, hence   

σ(𝒮1⨂𝒮2)\σ𝒮ℱ+
−(𝒮1⨂𝒮2) = Ε(𝒮1⨂𝒮2) 

 σ((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2))\σ𝒮ℱ+
−((𝒮1 +

𝒬1)⨂(𝒮2 + 𝒬2)) = Ε(𝒮1⨂𝒮2),   

rest we prove that Ε(𝒮1⨂𝒮2) =  Ε((𝒮1 +

𝒬1)⨂(𝒮2 + 𝒬2)). Let η ∈ Ε(𝒮1⨂𝒮2), it leads to 

η ∈ σ((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)) and η ∉

σ𝒮ℱ+
−((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)), also η ∈

iso σ(𝒮1⨂𝒮2). Clearly, if η ∈ iso σ(𝒮1⨂𝒮2) hence 

𝒮1
∗⨂𝒮2

∗ has 𝒮𝒱ℰ𝒫 at η and therefore (𝒮1
∗ +

𝒬1
∗)⨂(𝒮2

∗ + 𝒬2
∗) has 𝒮𝒱ℰ𝒫 at η. Implies that 

η ∈ iso σ((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)). Since 𝒮1⨂𝒮2 

isoloid then η ∈ Ε((𝒮1 + 𝒬1)⨂(𝒮2 + 𝒬2)).  
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