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ABSTRACT: Let §; € BL(X;) and §, € BL(X;) are a
continuous linear operators and both have property (ao)
then their tensor product has property (ao) if and only if
the upper Weyl spectrum identity o577 (5;®S,) =
o575 (81)0(S2)Uosr; (82)0(S1) holds true. Perturbations
by quasi-nilpotent operators are considered.

1. INTRODUCTION

We will postulate along this paper X is a Banach space
and BL(X) refer to each a continuous linear operators on
X. For § € BL(X), let 6(S),0,(S) and iso o(S8)denote
respectively the spectrum, the approximate point spectrum
and isolated points of ¢(S). Let a(S) refer to the nullity
of § defined by a(S) = dimker(S) and B(S) refer to the
deficiency of § defined by B(S) = codim S(X). If
nullity of S is finite and rang of § (R(S)) is closed then
Sis called an upper semi-Fredholm operator and if
deficiency of § is finite then § is a lower semi-Fredholm
operator.

In the complete @, ( X) (resp. @_( X) ) denote the set of
all upper (resp. lower) semi-Freadholm operators on X. A
continuous linear operator § is either upper or lower semi-
Fredholm then § is semi-Fredholm (symbolizes @I (X) ).
While § is called a Freadholm operator (symbolizes
@(X)) if nullity and deficiency of § are finite. Now we
can introduce the definition of an upper Weyl spectrum of
osr;(S) =M€ C:S —n €& (X))} ind(S) pointing to
the index of § and defined as follows ind(§) = a(S) —
B(S). The ascent of § € BL(X) is littlest non-negative
integer p = p(S) such that ker S# = ker 71, if there is
not such integer then ker §# # ker §#*1 for each p, then
»(8) is infinite. And the descent of an operator § is
littlest non-negative integer g = ¢(§) such that $§¢(X) =
S$%+1(X), if there is not such integer S#(X) = S%+1(X) for
each g then g(S) is infinite. According to [1], the ascent
and the descent are equal if p(S) and g(S) are finite.

A continuous linear operator § € BL(X) is Weyl if §
is Fredholm of index zero, whilst is said to be Browder if
S € e(X) and p(S8), ¢(S) are finite. The Weyl, Browder
and Browder approximate point spectrum define as
follows

ow(S8) = {n € C: § —n is not Weyl},
op(S) = {n € C: § — nis not Browder},
0ap(S) = {n € 0,(S):n € @ (A )and p(S —n) = »}.

An operator § € BL(X) is satisfies Weyl's Theorem if
o(8)\ow(8) = E%(S) and satisfies Browder's Theorem if
a(§)\ow(S) = °(S) where E°(S) is the eigenvalue of
finite multiplicity and T°(S) is poles of S. We can say
also a-Weyl's Theorem holds for § if 0,(S)\osz;(S) =
E2(S) and a-Browder's Theorem holds for § if 0,(S)\
osr(S) = T3(S) where E(S) an eigenvalue of S of
finite multiplicity that isolated in approximate point
spectrum of S and M2( S) is left poles of S of finite rank.

And we continuous to narrate the theories, but before
this we will impose n is non-negative integer and
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§ € BL(X) define Sy, to be restriction of § to R(S™) are
seen as a map from R(S™) into R(S™), [special case
Sio) = & . For some integer n, if the rang space R(S™) is
closed and Sy, is an upper semi- Fredholm operator, then
S is said to be upper semi B-Fredholm, while if the rang
space R(S™) is closed and Sy, is a lower semi-Fredholm
operator, then § is called lower semi B —Fredholm. The
index of S is defined as the index of operator.

For § € BL(X), is called B —Weyl if it a B —Fredholm
operator of index zero, and so B —Weyl spectrum of S is
defined by o (8) = {n € C:§ —nis not B — Weyl}. So
we can say that an operator § achieves generalized Weyl's
Theorem if o(S)\ogw(8) =E(S), and achieves
generalized Browder's Theorem if 6($)\ogw(S) = II(S),
where E(S) is an eigenvalue of § that are isolated in
spectrum of S and II(S) is a poles of resolvent of S. The
class of all upper semi B —Fredholm operators we will
signal to him S§BF. (X) whereas SBF (X) ={ne€
SBF,(X):ind(S) < 03, thus it will be defined the upper
B—Weyl spectrum is ospr;(S) ={n€C:S—n ¢
SBF-(X)}. Hence after definition upper B —Weyl
spectrum we call recall generalized a-Weyl's Theorem and
generalized a-Browder's Theorem alternately, ,o,(S)\
ospr; (8) = Ea(8) and  0,(S)\  ospr; (S) = 14(S),
where E,(8) is an eigenvalue of § that are isolated in
approximate point spectrum of § and I1,(S) is a left
poles of §. Remain to mention the definition of Drazin
spectrum and left Drazin invertible spectrum, if & has
finite ascent and descent then § is called Drazin
invertible, the Drazin spectrum op(S) ={neCsS —
1 is not a Drazin invertible}. An operator § is called left
Drazin invertible ( in symbol LD(X)), if LD(X) = {S €
BL(X): (S) < 0 and R(§#E*1) is closed}, and left
Drazin invertible spectrum is defined by o p(§) =
MecC:s—meLDX)}.

Recall that a continuous linear operator § €
BL(X), has single valued extension property at a
point n, € C ( Shortly SVEP), if for every open disc
U centered at n, then only analytic function f:

U — A satisfying (§ —n)f(n) = 0 is the function

f= 0. Evidently, § has SVEP at every isolated point

of the spectrum, consequently, note that the single

valued extension property plays an important role in

Fredholm and spectral Theory.

We postulate that §; € BL(X;) and §, € BL(X;),
the tenors product of two operators S;and S, on
X;®X, is the operator S;®S, defined by
(81835) Xi x1i®%zi = X $1%1i®8,%y; for  all
Yix1i®x%,; € X, ®X,. [6,8], if §; and §, satisfy
Browder's Theorem then §;®S, satisfies Browder's
Theorem if and only if the Weyl spectrum identity
0w (5188;) = 0y (51)0(S;2) U 0,(S2)0(S,) holds,
and if §; and §, satisfy a-Browder's Theorem then
5:Q8, satisfies a-Browder's Theorem if and only if
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the upper Weyl spectrum identity ogz;(5;®S,) =
0575 (81)0,4(82)Uosr; (82)0,(S1) holds.

2. Property (ao) and tensor  product

The most important findings of this paper is, if
8§, € BL(X;) and S, € BL(X;) have property (ao)
then §;®S, has property (ao) if and only if the
upper Weyl spectrum identity osr-(S:®S;) =
0575 (81)0(S2) U 0577 (S2)0(S1) holds, also study
perturbation under a quasi-nilpotent operator for
these royalty, this is part of the study, While the
other is assume that §; € BL(X;) and §, € BL(X,)
are polaroid and §;%, §," have SVEP then §;®S,
has property (SZ), and study perturbation by
commutator a quasi-nilpotent operator for property
(SZ). The following lemmas help to reach the
desired results: [1, Theorem 3.23], If S € BL(X) has
SVEP atn € o(5)\osr, () then n € iso 0,(S) and
»(S —n) <co. From [4] and [11] we get the
following results
i- 0,(8,88,) = 04(81)04(S,), where o, =0 or
Ox = Oy,
il — 55T+(51®52) =
057, (51)02(S52)Ucsz, (852)04(81),
il — o057 (5,883) =
GST_(51)08(52)U05f+(52)05(51)-

and proposition 3 in [12], we
iso 0(8;®S,) c iso 6(§;) iso a(S,).

Lemma 2.1 Lets,, §, are a continuous linear
operators in BL(X;) and BL(X,) respectively, then
0 € 0(5:®52)\ OsF, (8:®S,).

proof: We assume that 0 € 0(5;®S,) that is
$;®8, is not invertible and therefore 0 €
iso 0(8;®S,) and from [1, Theorem 3.18], §;®S,
has SVEP. And 0 ¢ o5y, (5:®S,), so that §;®S,
has closed rang and 0 < a(5;®S,) < oo. Since
$1QS8, is surjective and has SVEP then §;QS, is
injective [1, corollary 2.24], consequently §;and S,
are injective if and only if §;®S, is injective, we
obtain a(S;) >0 or a(S;) > 0. But a(5;®S,) is
infinite, this leads to a discrepancy
Lemma 2.2 Let §, € BL(X;) and S, € BL(X;),
then osr; (5188;) €
o575 (81)0(82)Uos5 (S2)0(S1)

obtain

Cc
0ab(81)0(82) U0, (52)0(S81) = 0,4, (5:1RS>).
Proof: The inclusion

0575 (81)0(S2)Uosr; (S2)0(S1) S

045 (81)0(S8,)Ua,,(S,)a(S,) verified because

o575 (S) S o4p(S) for all operator §. Now we must
prove that

0577 (81883) € 0577 (51)0(S52)Uosr(S2)0(Sy), let
N € 0577 (851)0(S2) Uose;(S2)0(Sy) as

057, (81883) S 0577 (81)0(S2)Uosr; (S2)0(S1)
implies that n # 0. Presume n = A7 be any
factorization of 1, we obtain £ € o(S;) and € € o(S,)
and therefor £ € o(S1)\os7;(S1) and £ €

0(52)\0s5; (S2). Then £ € @, (S,), ind (§; — A) <

SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS-2019

[59]

0,and ¢ € ,(S,), ind (5, — ) < 0. Consequently,
n € osr, (5:®S,). The following requirement is
proven ind(§;®S, — 1) < 0, assume ind($; ®S, —
n) > 0, then a(5;®S, — 1) < o and so B(5; RS, —
n) < o thusn € @(5;®S,). Let A = {(A;, €)1, €
0(8,)0(S,): A;¢; = n}, where A is a finite set. And
calculate ind(§;®S, — 1) we will use Theorem 3.5 in
[10], whereas ind(S,®S, — n) = X, ind(S; —
#;)dimH, (S, — ¢;) +

YL, ind(S, — #;) dim H, (S, — 4;), since ind(S; —
#;) and ind(S, — ¢;) are non-positive, This is
competitive. And so ind(§;®S, — n) < 0 thus

N & o577 (85:®S5).

Rest to prove
0ab (81883) = 0,45 (851)0(52)U0,,(S2)0(S,). Let
nNeg 0,p(5:®5;) then n€E@,(5:®S,) and
(808, — 1) < oo implies that n € iso 6(5;®S,).
For all factorization n = 4¢ of ) such that 4 € o(S;)
and ¢ € o(S,) that is A € @,.(S;) and £ € d,(S,).
Asiso 6(5,®S,) c iso 6(8;) iso 6(S8;), then §; has
SVEP at £ and S, has SVEP at £. Thus we have
pS—A)<o and p(S,—7F) < oo, therefore
A op(S;) and £¢ o(S,) and so né
Oab (81)0(82)U0,p(S2)0(Sy).

We postulated

N & 0,5(51)0(85,) U0, (8,)0(S,), since n # Ofor

any factorization n = A+¢ of n such that 4 € o(S;),

tea(S)and A & 0,,(51), € & 0,5(S,), then

h € @ (51), p(S; —A) <oand £ € ¢,(S,),

p(S, —£) < oo, implies that n € ¢, (5;QS,) and

£ € iso a(8;), £ € isoo (S§,), thatisn €

iso 0(8;®35,). It follows that 1 € ¢, (5;®S,) and

p(S5:808, — 1) < 0. Hencen € 0,,(5;®S,). So

we get the result.

Definition 2.3 [3] A continuous linear operator
S € L(A) is said to have property (ao) if o(8)\
osr; (S) = ML(S).

Proposition 2.4 Let § be a continuous linear
operators that the following are equivalent for §

i- property (ao)holds for §,

ii- 0,5 (S) = 0577 (S).

Proof: For every operators S, ogz;(S) <
oap(S). Let n € o(S)\ose;(S), since property
(ao) holds for § then n € I1,(S). But by Theorem
[3], property (Sab) holds for S then n € I( S)
while that TI2(S) = 0,(8)\o,,(S). Therefore
Oab(S) S 0555 (S).

Reciprocally, let n € I1,(8), that is n € 0,(S)
and n € o.p(S). But 6,(8) < o(S) and o7 (S) <
op(S), then we get n € o(S) and n & os7;(S).
Thus  n€o(S)\osr;(S). Now, let ne
o($)\osr;(S). Since 0,p(S) = 0577 (S) then
property (az) holds for § and therefore n € 2( S).
As T12(8) € TI(S), then 1y € T1,(S). Consequently,
property (ao) holds for §.

The following Theorem proves that the above
lemma validates for two directions if we add the



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS-2019

condition §; has property (ao) and §, has property Duggal in [5, 9]defined the polaroid operator as
(ao0). follows, if every isolated point of the spectrum of
Theorem 2.5 Suppose that §; € BL(X;),and S is the pole of resolvent of §, also n is pole of
S, € BL(X;), and both have property (ao), then resolvent of § if and only if 0 < p(§—n) =
5;®S5, has property (ao) if and only if g(S§ —1n) < . Or equivalent, an operator S €
0577 (8188,) = 0577 (851)0(82) U 0557 (52)0(S1). BL(X) is called polaroid if and only if there exists
Proof: We assume that S;®S, has property d=dm)€eN  such  that  He(§—n)=

(ao)then by above lemma we get the result.
Reciprocally, Since §;, S, has property (ao) then
oap(S1) = 05?;(51)1 Oap(S2) = OsFy (S2).
According to the hypothesis
0575 ($1983) = 0577 (81)0(82)Uosz; (S2)0(S1)
= 045 (81)0(52)U0,,(S3)0(S1) =
0,4 (5:8S,), thus §; ®S,, has property (ao).

Theorem 2.6 Let §; and S, have property (ao).
Then 0'5}'_:(51®52) =
o575 (81)0(852)Uosz; (S2)0(Sy) if and only if §;
has SVEP at every points 4 € @, (5;)and S, has
SVEP at every points ¢ € ¢, (S,) such that
0 #n =A% € c(S5:85;)\ 0s5;(S51QS7).

Proof: We assume that mn € 0o(S5;®5,)\

o577 (5:88;) then n € 6(5;®852)\ 0,p(5:18S5),
because §; and S, have property (ao). For every
factorization 0 = n = A¢ of n such that 4 € o(S;)
and ¢ € o(S,), we have A2 €@, (5;) and €
@,(S;) And consequently p(S; —#A) < oo and
p(S; — ) < . It leads to §; has SVEP at £ and
S, has SVEP at 4.

Reciprocally, we must prove that

OsFy (8198,) = 05?;(51)0(52)U05T; (82)0(S1).
Enough to prove that
0ap($1®52) € 0577 (51853). Let ne
0(5185,)\ 0577 (5:85;) then n € ¢, (5:0S;)
and ind(5;®S,) < 0. Hence for every factorization
0 #n = A¢ of n where 4 € o(S5;) and € € o(S,),
and £ € @.(S5,), £ € ©,.(S8,). Since §; has SVEP
at 4 and S, has SVEP at £ then p(§; —A) <
and p(S, — ) < . Therefore A € 0,,(S;) and
£ & 0,5(S2). Thusn € 0, (5:RS,).

Theorem 2.7 Let &, and S, be continuous linear
operator in BL(X;) and BL(X,) respectively. If §;"
and S," have SVEP then §;®S, has property (ao).

Proof: As §;" and S," have SVEP then satisfy
generalized a-Browder Theorem and consequently
S, 8, satisfy a-Browder Theorem. Then by
Theorem 1 in [8], a-Browder Theorem holds for
$1®8,, Thus 0,,(85:18S;) = 0577 (518S,). It
leads to property (ao)holds for §; ®S,.

Theorem 2.8 Let §; € BL(X;) and §, € BL(X,), If
S, and &, have SVEP then §;"®S," has property
(ao).

Proof: As §; and §, have SVEP then we obtain
by [1, corollary 3.73], §;" and S,* obey a-Browder
Theorem. Consequently, $;"®sS," obey a-Browder
Theorem. That is
0ab (81" ®S,") = 055 (81" ®S,7). Evidently,
§."®S," obey property (ao).
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ker(S — )71, for all n € isoo(S). Where Ho(S —

n) is a quasi-nilpotent part of § € BL(X)define as

follows Ho(§ — 1) = {a € X:limp_ |l
1

(S —m"alln = 0}.

Definition 2.9 [3] A continuous linear operator
§ € BL(X)is said to have property (SZ) if o(5)\
osr; (S) = E(S).

Theorem 2.10 Let §; €BL(X,) and S, €
BL(X,) are polaroid. If §;* and §,” have SVEP
then §; ®S§, has property (SZ).

Proof: Let's start with the imposition 8, and S,”
have SVEP, then we have

ow(Sy) = GST;(51) = ow(S1)
ow(S2) = 0577 (82) = 0w (S2),
also we have §;, §, and §;®S, satisfies Browder's
Theorem, thus

0, (8518S,) = ow(5:®S,)

= ow(81)0(S)Uow (S2)a(S,)

= 0gw(51)0(52)Uog(S2)0(Sy)
= ogw(51®35)
05?;(51)0(52)U05T-;(52)0(51) = GST;(51®52)-

As §; and §, are polaroid implies that §;®S, is
polaroid [6, Lemma 2], and consequently Weyl's
Theorem holds for §;®S,. From [7, Theorem
3.17], generalized Weyl Theorem holds for §;®S,,
thus 0(5:®5,)\0pw (518S;) = 0(5;85;)\
osr; (5188;) = E(5;88;). Plainly, §;®S, has
property (SZ).

Theorem 2.11 Let §; € BL(X;) and S, €
BL(X,) are polaroid. If §; and §, have SVEP then
§,"®S," has property (SZ).

Proof: We assume that §; and §, have SVEP,
then we have from [1, corollary 2.5], [1, corollary
3.53], [2, Theorem 2.20]

ow(S:) = 05?;(51*) = opw(S1")
ow(S;") = 055;:(82") = 0w (S27),
also we have §;*, §," and §,"®S," satisfies a-
Browder's Theorem and therefore Browder's
Theorem , thus

0, (81" ®S;") = ow(S,"®S;")

= ow(81)0(S;)Uow(S;)o(Sy)

= 0pw(81)0(S;)Uopy (S, )o(S;")
= GBW(‘SI*@SZ*)

0575 (817)0(8,)Uosr; (8,7)0(S; ") =
osr; (81°®S;).
As §," and §," are polaroid implies that §;*®S5,"
is polaroid [6, Lemma 2], and consequently Weyl's



Theorem holds for §,*®S,". From [7, Theorem
3.17], generalized Weyl Theorem holds
for $,"®S,", thus o(S;"®S,")\0pw (S, '®S,") =
0(51*®52*)\05T; ($1°®S,") = E(5;'®S,7).
Plainly, §;"®S," has property (SZ).
3. PERTURBATIONS

Assume [Q,8]1=08 —S8Q refer to the
commutator of operators Q,§ € BL(X). We assume
that @,, @, in BL(X;) and BL(X,) respectively, are
a quasi-nilpotent operators [Q,8;] = [Q2,8,] =0
for some operators §; € BL(X,) and §, € BL(X,),
hence (§; + 9,)Q(S, + 9,) = (5:8S,) + Q, such
that Q=500 +5,89; +9:®9; €
BL(X;®X;) is a quasi-nilpotent operator.
Remember the definition of isoloid operator,
§ € BL(X), is isoloid if iso o(§) = E(S).

Proposition 3.1 Suppose that § € B(X) be a
polaroid operator then E(S) = II(S).

Proof: As always we have II(S) € E(S), for
every operators §. Now, let n € E(S) that is
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Proof:  Observe  that 0(5:8S8,) =
0((51 +01)R(S; + Qz)): 0'5?;(51®52) =
057 ((S1+01)®(S, +Q;)), and that the
perturbation of an operator by commuting quasi-
nilpotent has SVEP if and only if the operator has
SVEP. If property (SZ) holds for §;®S,, hence
0(51®52)\057-"; (8:®8;) = E(5:®S,)

(81 + 2®(S; + 92))\osr; (81 +

0®(S; +2,)) = E(5:88,),

rest we prove that E(5;®S,)= E((S; +
0,)Q(S, + Q). Let n € E(5;®S,), it leads to
1€ o((S; +0)®(S; +2,)) and née¢
057-";((51 +0)8(S; +22)), also ne
iso 0(§;®S,). Clearly, if n € iso 6(5;®5,) hence
§."®S," has SVEP at n and therefore (S;" +
0:9R(S," + 9,") has SVEP at n. Implies that

n € isoo((S; + Q)®(S, + Q,)). Since §;®S,
isoloid then € E((S; + 21)®(S; + 9,)).
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N € iso o(§), since S is a polaroid then n € I1(S).
Therefore E(S) = II(S).

Theorem 3.2 Suppose that Q,, 9, inBL(X;) and
BL(X,) respectively, be a quasi-nilpotent operators
[91,81] =[Q,,8,] =0 for some operators
S; € BL(X;) and §, € BL(X,). If §;®S, polaroid
then property (ao) holds for §;®S, implies
(81 + 91)Q(S, + 9,) satisfies property (ao).

Proof: Observe that o(S$;®S,) = o((S; +
0)8®(S; +02)),  05p:(5:8S,) = o5 ((S; +
2,)R(S, +Q2)), and that the perturbation of an
operator by commuting quasi-nilpotent has SVEP
if and only if the operator has SVEP. If property
(SZ) holds for §; ®S,, hence
0(51®52)\0577; ($198;) = 1,(5;:8S5)

a((81 + 20)®(S, + 22))\osz; ((S1 +

Q1)®(52 + Qz)) = Ha(51®52):

we ought prove that I,($;®S,) = M,((S; +
0)®(S, + Q). Let n € I,(5;®S,), it leads to
1 € 0((51 + 91)®(S; + Q7)) and ne
o577 ((S1 +91)®(S, + 05)), also ne
iso 6(5;®5,). Clearly, if n € iso 6(5;®S,) hence
$."®S," has SVEP at n and therefore
I,(5,®S,) =1(5;,®S5,),also we have (S;"+
0:)R(S," +Q,") has SVEP at n, Implies that
n € iso o((S; + Q1)®(S, + Q5)). Since §;®S, be
a polaroid it leads to §;®S, an isoloid then
n € E((S; + 91)®(S; + Q;)), consequently by
above proposition we get n € l'[((S1 +0.)9(S, +
Q,)). Therefore, (S;+ Q1)®(S, +Q,) satisfies
property (ao).

Theorem 3.3 Suppose that Q,, @, inBL(X;)
and BL(X,) respectively, be a quasi-nilpotent
operators  [Q4,8;] = [Q2,8,] =0 for some
operators §; € BL(X;) and &, € BL(X;). If §;®S,
isoloid then property (SZ) holds for §;®S, implies
(81 + 91)R(S, + Q,) satisfies property (SZ).
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