Property (ao) AND TENSOR PRODUCT

Zaman Adel Rashid¹, Buthainah A.A. Ahmed²

^{1,2}Department of Mathematics, College of Science, University of Baghdad, Iraq

¹ zamnhamza11@gmail.com

² buthainah41@gmail.com

ABSTRACT: Let $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$ are a continuous linear operators and both have property (ao) then their tensor product has property (ao) if and only if the upper Weyl spectrum identity $\sigma_{S\mathcal{F}_{+}^{-}}(S_1)\otimes S_2) = \sigma_{S\mathcal{F}_{+}^{-}}(S_1)\sigma(S_2)\cup\sigma_{S\mathcal{F}_{+}^{-}}(S_2)\sigma(S_1)$ holds true. Perturbations by quasi-nilpotent operators are considered.

1. INTRODUCTION

We will postulate along this paper X is a Banach space and BL(X) refer to each a continuous linear operators on X. For $S \in BL(X)$, let $\sigma(S), \sigma_a(S)$ and iso $\sigma(S)$ denote respectively the spectrum, the approximate point spectrum and isolated points of $\sigma(S)$. Let $\alpha(S)$ refer to the nullity of S defined by $\alpha(S) = \dim \ker(S)$ and $\beta(S)$ refer to the deficiency of S defined by $\beta(S) = \operatorname{codim} S(X)$. If nullity of S is finite and rang of $S(\Re(S))$ is closed then S is called an upper semi-Fredholm operator and if deficiency of S is finite then S is a lower semi-Fredholm operator.

In the complete $\phi_+(X)$ (resp. $\phi_-(X)$) denote the set of all upper (resp. lower) semi-Freadholm operators on X. A continuous linear operator S is either upper or lower semi-Fredholm then S is semi-Fredholm (symbolizes $\varphi_{+}^{-}(X)$). While S is called a Freadholm operator (symbolizes $\varphi(X)$ if nullity and deficiency of S are finite. Now we can introduce the definition of an upper Weyl spectrum of $\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}) = \{\eta \in \mathbb{C} : \mathcal{S} - \eta \notin \varphi_{+}^{-}(X)\}.$ ind (\mathcal{S}) pointing to the index of S and defined as follows $ind(S) = \alpha(S) - \alpha(S)$ $\beta(S)$. The ascent of $S \in BL(X)$ is littlest non-negative integer p = p(S) such that ker $S^{p} = \ker S^{p+1}$, if there is not such integer then ker $S^{\mathcal{P}} \neq \ker S^{\mathcal{P}+1}$ for each \mathcal{P} , then p(S) is infinite. And the descent of an operator S is littlest non-negative integer q = q(S) such that $S^{q}(X) =$ $S^{q+1}(X)$, if there is not such integer $S^{q}(X) \neq S^{q+1}(X)$ for each q then q(S) is infinite. According to [1], the ascent and the descent are equal if p(S) and q(S) are finite.

A continuous linear operator $S \in BL(X)$ is Weyl if S is Fredholm of index zero, whilst is said to be Browder if $S \in \varphi(X)$ and p(S), q(S) are finite. The Weyl, Browder and Browder approximate point spectrum define as follows

 $\sigma_{W}(\mathcal{S}) = \{ \eta \in \mathbb{C} : \mathcal{S} - \eta \text{ is not Weyl} \},\\ \sigma_{b}(\mathcal{S}) = \{ \eta \in \mathbb{C} : \mathcal{S} - \eta \text{ is not Browder} \},$

 $\sigma_{ab}(\mathcal{S}) = \{\eta \in \sigma_a(\mathcal{S}): \eta \notin \varphi_+(\mathcal{A}) \text{ and } p(\mathcal{S}-\eta) = \infty\}.$

An operator $S \in BL(X)$ is satisfies Weyl's Theorem if $\sigma(S) \setminus \sigma_W(S) = E^0(S)$ and satisfies Browder's Theorem if $\sigma(S) \setminus \sigma_W(S) = \Pi^0(S)$ where $E^0(S)$ is the eigenvalue of finite multiplicity and $\Pi^0(S)$ is poles of S. We can say also a-Weyl's Theorem holds for S if $\sigma_a(S) \setminus \sigma_{S\mathcal{F}_+}(S) = E_a^0(S)$ and a-Browder's Theorem holds for S if $\sigma_a(S) \setminus \sigma_{S\mathcal{F}_+}(S) = \Pi_a^0(S)$ where $E_a^0(S)$ an eigenvalue of S of finite multiplicity that isolated in approximate point spectrum of S and $\Pi_a^0(S)$ is left poles of S of finite rank.

And we continuous to narrate the theories, but before this we will impose n is non-negative integer and

 $S \in BL(X)$ define $S_{[n]}$ to be restriction of S to $\Re(S^n)$ are seen as a map from $\Re(S^n)$ into $\Re(S^n)$, [special case $S_{[0]} = S$]. For some integer n, if the rang space $\Re(S^n)$ is closed and $S_{[n]}$ is an upper semi- Fredholm operator, then S is said to be upper semi B-Fredholm, while if the rang space $\Re(S^n)$ is closed and $S_{[n]}$ is a lower semi-Fredholm operator, then S is called lower semi B – Fredholm. The index of S is defined as the index of operator.

For $S \in BL(X)$, is called B – Weyl if it a B – Fredholm operator of index zero, and so B – Weyl spectrum of S is defined by $\sigma_{Bw}(S) = \{\eta \in \mathbb{C} : S - \eta \text{ is not } B - Weyl\}$. So we can say that an operator S achieves generalized Weyl's Theorem if $\sigma(S) \setminus \sigma_{Bw}(S) = E(S)$, and achieves generalized Browder's Theorem if $\sigma(S) \setminus \sigma_{Bw}(S) = \Pi(S)$, where E(S) is an eigenvalue of S that are isolated in spectrum of S and $\Pi(S)$ is a poles of resolvent of S. The class of all upper semi B-Fredholm operators we will signal to him $SBF_+(X)$ whereas $SBF_+(X) = \{\eta \in$ $SBF_+(X)$: ind $(S) \le 0$, thus it will be defined the upper B-Weyl spectrum is $\sigma_{SBF_{+}}(S) = \{\eta \in \mathbb{C}: S - \eta \notin \mathbb{C}\}$ $SBF_{+}^{-}(X)$. Hence after definition upper B-Weyl spectrum we call recall generalized a-Weyl's Theorem and generalized a-Browder's Theorem alternately, $\sigma_a(S)$ $\sigma_{\mathcal{SBF}_{\perp}}(\mathcal{S}) = E_{a}(\mathcal{S}) \text{ and } \sigma_{a}(\mathcal{S}) \setminus \sigma_{\mathcal{SBF}_{\perp}}(\mathcal{S}) = \Pi_{a}(\mathcal{S}),$ where $E_a(S)$ is an eigenvalue of S that are isolated in approximate point spectrum of S and $\Pi_a(S)$ is a left poles of S. Remain to mention the definition of Drazin spectrum and left Drazin invertible spectrum, if \mathcal{S} has finite ascent and descent then S is called Drazin invertible, the Drazin spectrum $\sigma_D(S) = \{\eta \in \mathbb{C}: S - S\}$ η is not a Drazin invertible}. An operator S is called left Drazin invertible (in symbol LD(X)), if LD(X) = { $S \in$ BL(X): $p(S) < \infty$ and $\Re(S^{p(S)+1})$ is closed}, and left Drazin invertible spectrum is defined by $\sigma_{LD}(S) =$ $\{\eta \in \mathbb{C}: S - \eta \notin LD(X)\}.$

Recall that a continuous linear operator $S \in$ BL(X), has single valued extension property at a point $\eta_0 \in \mathbb{C}$ (Shortly SVEP), if for every open disc \mathcal{U} centered at η_0 then only analytic function f: $\mathcal{U} \rightarrow \mathcal{A}$ satisfying $(S - \eta)f(\eta) = 0$ is the function $f \equiv 0$. Evidently, S has SVEP at every isolated point of the spectrum, consequently, note that the single valued extension property plays an important role in Fredholm and spectral Theory.

We postulate that $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$, the tenors product of two operators S_1 and S_2 on $X_1 \otimes X_2$ is the operator $S_1 \otimes S_2$ defined by $(S_1 \otimes S_2) \sum_i x_{1i} \otimes x_{2i} = \sum_i S_1 x_{1i} \otimes S_2 x_{2i}$ for all $\sum_i x_{1i} \otimes x_{2i} \in X_1 \otimes X_2$. [6,8], if S_1 and S_2 satisfy Browder's Theorem then $S_1 \otimes S_2$ satisfies Browder's Theorem if and only if the Weyl spectrum identity $\sigma_w(S_1 \otimes S_2) = \sigma_w(S_1)\sigma(S_2) \cup \sigma_w(S_2)\sigma(S_1)$ holds, and if S_1 and S_2 satisfy a-Browder's Theorem then $S_1 \otimes S_2$ satisfies a-Browder's Theorem if and only if the upper Weyl spectrum identity $\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1})\otimes\mathcal{S}_{2} = \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1})\sigma_{a}(\mathcal{S}_{2})\cup\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2})\sigma_{a}(\mathcal{S}_{1})$ holds.

2. Property (ao) and tensor product

The most important findings of this paper is, if $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$ have property (ao) then $S_1 \otimes S_2$ has property (ao) if and only if the upper Weyl spectrum identity $\sigma_{\mathcal{SF}_{+}}(\mathcal{S}_1 \otimes \mathcal{S}_2) =$ $\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2}) \cup \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1})$ holds, also study perturbation under a quasi-nilpotent operator for these royalty, this is part of the study, While the other is assume that $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$ are polaroid and S_1^* , S_2^* have SVEP then $S_1 \otimes S_2$ has property (SZ), and study perturbation by commutator a quasi-nilpotent operator for property (SZ). The following lemmas help to reach the desired results: [1, Theorem 3.23], If $S \in BL(X)$ has SVEP at $\eta \in \sigma(S) \setminus \sigma_{SF_+}(S)$ then $\eta \in iso \sigma_a(S)$ and $p(S - \eta) < \infty$. From [4] and [11] we get the following results

i- $\sigma_x(\mathcal{S}_1 \otimes \mathcal{S}_2) = \sigma_x(\mathcal{S}_1)\sigma_x(\mathcal{S}_2)$, where $\sigma_x = \sigma$ or $\sigma_x = \sigma_a$,

$$\begin{split} &\text{ii} - \sigma_{\mathcal{SF}_{+}}(\mathcal{S}_{1} \otimes \mathcal{S}_{2}) = \\ &\sigma_{\mathcal{SF}_{+}}(\mathcal{S}_{1})\sigma_{a}(\mathcal{S}_{2}) \cup \sigma_{\mathcal{SF}_{+}}(\mathcal{S}_{2})\sigma_{a}(\mathcal{S}_{1}), \\ &\text{iii} - \sigma_{\mathcal{SF}_{-}}(\mathcal{S}_{1} \otimes \mathcal{S}_{2}) = \end{split}$$

 $\sigma_{\mathcal{SF}_{-}}(\mathcal{S}_{1})\sigma_{\delta}(\mathcal{S}_{2})\cup\sigma_{\mathcal{SF}_{+}}(\mathcal{S}_{2})\sigma_{\delta}(\mathcal{S}_{1}).$

and proposition 3 in [12], we obtain iso $\sigma(S_1 \otimes S_2) \subset iso \sigma(S_1)$ iso $\sigma(S_2)$.

Lemma 2.1 Let S_1 , S_2 are a continuous linear operators in BL(X₁) and BL(X₂) respectively, then $0 \notin \sigma(S_1 \otimes S_2) \setminus \sigma_{S\mathcal{F}_+}(S_1 \otimes S_2)$.

proof: We assume that $0 \in \sigma(S_1 \otimes S_2)$ that is $S_1 \otimes S_2$ is not invertible and therefore $0 \in$ iso $\sigma(S_1 \otimes S_2)$ and from [1, Theorem 3.18], $S_1 \otimes S_2$ has $SV \mathcal{EP}$. And $0 \notin \sigma_{S\mathcal{F}_+}(S_1 \otimes S_2)$, so that $S_1 \otimes S_2$ has closed rang and $0 < \alpha(S_1 \otimes S_2) < \infty$. Since $S_1 \otimes S_2$ is surjective and has $SV \mathcal{EP}$ then $S_1 \otimes S_2$ is injective [1, corollary 2.24], consequently S_1 and S_2 are injective if and only if $S_1 \otimes S_2$ is injective, we obtain $\alpha(S_1) > 0$ or $\alpha(S_2) > 0$. But $\alpha(S_1 \otimes S_2)$ is infinite, this leads to a discrepancy

Lemma 2.2 Let $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$, then $\sigma_{S\mathcal{F}_+^-}(S_1 \otimes S_2) \subseteq$

$$\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2}) \cup \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1}) \subseteq$$

$$\sigma_{ab}(\mathcal{S}_1)\sigma(\mathcal{S}_2)\cup\sigma_{ab}(\mathcal{S}_2)\sigma(\mathcal{S}_1) = \sigma_{ab}(\mathcal{S}_1\otimes\mathcal{S}_2).$$

Proof: The inclusion

 $\sigma_{\mathcal{SF}_{+}}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2})\cup\sigma_{\mathcal{SF}_{+}}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1}) \subseteq \\ \sigma_{ab}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2})\cup\sigma_{ab}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1}) \text{ verified because} \\ \sigma_{\mathcal{SF}_{+}}(\mathcal{S}) \subseteq \sigma_{ab}(\mathcal{S}) \text{ for all operator } \mathcal{S}. \text{ Now we must} \\ \text{prove that}$

$$\begin{split} \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_1 \otimes \mathcal{S}_2) &\subseteq \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_1) \sigma(\mathcal{S}_2) \cup \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_2) \sigma(\mathcal{S}_1), \text{ let } \\ \eta \notin \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_1) \sigma(\mathcal{S}_2) & \cup \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_2) \sigma(\mathcal{S}_1) \text{ as } \\ \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_1 \otimes \mathcal{S}_2) &\subseteq \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_1) \sigma(\mathcal{S}_2) \cup \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_2) \sigma(\mathcal{S}_1) \\ \text{implies that } \eta \neq 0. \text{ Presume } \eta = \hbar \ell \text{ be any } \\ \text{factorization of } \eta, \text{ we obtain } \hbar \in \sigma(\mathcal{S}_1) \text{ and } \ell \in \sigma(\mathcal{S}_2) \\ \text{ and therefor } \hbar \in \sigma(\mathcal{S}_1) \setminus \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_1) \text{ and } \ell \in \\ \sigma(\mathcal{S}_2) \setminus \sigma_{\mathcal{SF}^+_+}(\mathcal{S}_2). \text{ Then } \hbar \in \phi_+(\mathcal{S}_1), \text{ ind } (\mathcal{S}_1 - \hbar) \leq \end{split}$$

0, and $\ell \in \varphi_+(\mathcal{S}_2)$, ind $(\mathcal{S}_2 - \ell) \leq 0$. Consequently, $\eta \notin \sigma_{\mathcal{SF}_+}(\mathcal{S}_1 \otimes \mathcal{S}_2)$. The following requirement is proven $\operatorname{ind}(S_1 \otimes S_2 - \eta) \leq 0$, assume $\operatorname{ind}(S_1 \otimes S_2 - \eta)$ η > 0, then $\alpha(S_1 \otimes S_2 - \eta) < \infty$ and so $\beta(S_1 \otimes S_2 - \eta)$ $\sigma(\mathcal{S}_1)\sigma(\mathcal{S}_2)$: $\mathcal{H}_i\ell_i = \eta$ }, where Λ is a finite set. And calculate ind $(S_1 \otimes S_2 - \eta)$ we will use Theorem 3.5 in [10], whereas $\operatorname{ind}(\mathcal{S}_1 \otimes \mathcal{S}_2 - \eta) = \sum_{j=n+1}^p \operatorname{ind}(\mathcal{S}_1 - \eta)$ h_{j} dim H₀ $(S_{2} - \ell_{j}) +$ $\sum_{i=1}^{n} \operatorname{ind}(S_2 - \ell_i) \operatorname{dim} H_0(S_1 - \hbar_i)$, since $\operatorname{ind}(S_1 - \ell_i)$ h_i) and ind $(S_2 - \ell_i)$ are non-positive, This is competitive. And so $\operatorname{ind}(S_1 \otimes S_2 - \eta) \leq 0$ thus $\eta \notin \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1} \otimes \mathcal{S}_{2}).$ Rest to prove $\sigma_{ab}(\mathcal{S}_1 \otimes \mathcal{S}_2) = \sigma_{ab}(\mathcal{S}_1)\sigma(\mathcal{S}_2) \cup \sigma_{ab}(\mathcal{S}_2)\sigma(\mathcal{S}_1).$ Let $\eta \notin \sigma_{ab}(\mathcal{S}_1 \otimes \mathcal{S}_2) \quad \text{then} \quad$ $\eta \in \varphi_+(\mathcal{S}_1 \otimes \mathcal{S}_2)$ and $p(S_1 \otimes S_2 - \eta) < \infty$ implies that $\eta \in iso \sigma(S_1 \otimes S_2)$. For all factorization $\eta = \hbar \ell$ of η such that $\hbar \in \sigma(S_1)$ and $\ell \in \sigma(S_2)$ that is $\hbar \in \varphi_+(S_1)$ and $\ell \in \varphi_+(S_2)$. As iso $\sigma(S_1 \otimes S_2) \subset iso \sigma(S_1)$ iso $\sigma(S_2)$, then S_1 has SVEP at h and S_2 has SVEP at ℓ . Thus we have $p(S_1 - h) < \infty$ and $p(S_2 - \ell) < \infty$, therefore $h \notin \sigma_{ab}(\mathcal{S}_1)$ and $\ell \notin \sigma_{ab}(\mathcal{S}_2)$ and so η∉ $\sigma_{ab}(\mathcal{S}_1)\sigma(\mathcal{S}_2)\cup\sigma_{ab}(\mathcal{S}_2)\sigma(\mathcal{S}_1).$ We postulated $\eta \notin \sigma_{ab}(\mathcal{S}_1)\sigma(\mathcal{S}_2) \cup \sigma_{ab}(\mathcal{S}_2)\sigma(\mathcal{S}_1)$, since $\eta \neq 0$ for any factorization $\eta = \hbar \ell$ of η such that $\hbar \in \sigma(S_1)$, $\ell \in \sigma(\mathcal{S}_2)$ and $\hbar \notin \sigma_{ab}(\mathcal{S}_1), \ell \notin \sigma_{ab}(\mathcal{S}_2)$, then $\hbar \in \varphi_+(\mathcal{S}_1), p(\mathcal{S}_1 - \hbar) < \infty \text{ and } \ell \in \varphi_+(\mathcal{S}_2),$ $p(S_2 - \ell) < \infty$, implies that $\eta \in \varphi_+(S_1 \otimes S_2)$ and

 $\hbar \in \text{iso } \sigma(\mathcal{S}_1), \ell \in \text{iso} \sigma(\mathcal{S}_2), \text{ that is } \eta \in \text{iso } \sigma(\mathcal{S}_1 \otimes \mathcal{S}_2).$ It follows that $\eta \in \varphi_+(\mathcal{S}_1 \otimes \mathcal{S}_2)$ and $p(\mathcal{S}_1 \otimes \mathcal{S}_2 - \eta) < \infty$. Hence $\eta \notin \sigma_{ab}(\mathcal{S}_1 \otimes \mathcal{S}_2)$. So we get the result.

Definition 2.3 [3] A continuous linear operator $S \in \mathcal{L}(\mathcal{A})$ is said to have property (ao) if $\sigma(S) \setminus \sigma_{ST^-}(S) = \prod_a(S)$.

Proposition 2.4 Let S be a continuous linear operators that the following are equivalent for S **i**-property (ao)holds for S,

ii- $\sigma_{ab}(\mathcal{S}) = \sigma_{\mathcal{SF}_{+}}(\mathcal{S}).$

Proof: For every operators \mathcal{S} , $\sigma_{\mathcal{SF}_{+}}(\mathcal{S}) \subseteq \sigma_{ab}(\mathcal{S})$. Let $\eta \in \sigma(\mathcal{S}) \setminus \sigma_{\mathcal{SF}_{+}}(\mathcal{S})$, since property (ao) holds for \mathcal{S} then $\eta \in \Pi_{a}(\mathcal{S})$. But by Theorem [3], property (Sab) holds for \mathcal{S} then $\eta \in \Pi_{a}^{0}(\mathcal{S})$ while that $\Pi_{a}^{0}(\mathcal{S}) = \sigma_{a}(\mathcal{S}) \setminus \sigma_{ab}(\mathcal{S})$. Therefore $\sigma_{ab}(\mathcal{S}) \subseteq \sigma_{\mathcal{SF}_{+}}(\mathcal{S})$.

Reciprocally, let $\eta \in \Pi_a(\mathcal{S})$, that is $\eta \in \sigma_a(\mathcal{S})$ and $\eta \notin \sigma_{LD}(\mathcal{S})$. But $\sigma_a(\mathcal{S}) \subseteq \sigma(\mathcal{S})$ and $\sigma_{\mathcal{SF}_+^-}(\mathcal{S}) \subseteq$ $\sigma_{LD}(\mathcal{S})$, then we get $\eta \in \sigma(\mathcal{S})$ and $\eta \notin \sigma_{\mathcal{SF}_+^-}(\mathcal{S})$. Thus $\eta \in \sigma(\mathcal{S}) \setminus \sigma_{\mathcal{SF}_+^-}(\mathcal{S})$. Now, let $\eta \in$ $\sigma(\mathcal{S}) \setminus \sigma_{\mathcal{SF}_+^-}(\mathcal{S})$. Since $\sigma_{ab}(\mathcal{S}) = \sigma_{\mathcal{SF}_+^-}(\mathcal{S})$ then property (az) holds for \mathcal{S} and therefore $\eta \in \Pi_a^0(\mathcal{S})$. As $\Pi_a^0(\mathcal{S}) \subseteq \Pi(\mathcal{S})$, then $\eta \in \Pi_a(\mathcal{S})$. Consequently, property (ao) holds for \mathcal{S} .

The following Theorem proves that the above lemma validates for two directions if we add the

condition S_1 has property (ao) and S_2 has property (ao).

Theorem 2.5 Suppose that $\mathcal{S}_1 \in BL(X_1)$, and $\mathcal{S}_2 \in BL(X_2)$, and both have property (ao), then $\mathcal{S}_1 \otimes \mathcal{S}_2$ has property (ao) if and only if $\sigma_{\mathcal{SF}_1^-}(\mathcal{S}_1 \otimes \mathcal{S}_2) = \sigma_{\mathcal{SF}_1^-}(\mathcal{S}_1)\sigma(\mathcal{S}_2) \cup \sigma_{\mathcal{SF}_1^-}(\mathcal{S}_2)\sigma(\mathcal{S}_1)$.

Proof: We assume that $S_1 \otimes S_2$ has property (ao)then by above lemma we get the result.

Reciprocally, Since S_1 , S_2 has property (ao) then $\sigma_{ab}(S_1) = \sigma_{SF_+}(S_1)$, $\sigma_{ab}(S_2) = \sigma_{SF_+}(S_2)$. According to the hypothesis

 $\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1} \otimes \mathcal{S}_{2}) = \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2}) \cup \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1})$ $= \sigma_{ab}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2}) \cup \sigma_{ab}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1}) =$

 $\sigma_{ab}(\mathcal{S}_1 \otimes \mathcal{S}_2)$, thus $\mathcal{S}_1 \otimes \mathcal{S}_2$ has property (ao).

Theorem 2.6 Let S_1 and S_2 have property (ao). Then $\sigma_{SF_+}(S_1 \otimes S_2) =$

$$\begin{split} &\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2})\cup\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1}) \text{ if and only if } \mathcal{S}_{1} \\ &\text{has } \mathcal{SVEP} \text{ at every points } \mathcal{h} \in \phi_{+}(\mathcal{S}_{1}) \text{ and } \mathcal{S}_{2} \text{ has } \\ &\mathcal{SVEP} \text{ at every points } \mathcal{\ell} \in \phi_{+}(\mathcal{S}_{2}) \text{ such that } \\ &0 \neq \eta = \mathcal{h}\mathcal{\ell} \in \sigma(\mathcal{S}_{1} \otimes \mathcal{S}_{2}) \setminus \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1} \otimes \mathcal{S}_{2}). \end{split}$$

Proof: We assume that $\eta \in \sigma(S_1 \otimes S_2) \setminus \sigma_{S\mathcal{F}_+^-}(S_1 \otimes S_2)$ then $\eta \in \sigma(S_1 \otimes S_2) \setminus \sigma_{ab}(S_1 \otimes S_2)$, because S_1 and S_2 have property (ao). For every factorization $0 \neq \eta = \hbar \ell$ of η such that $\hbar \in \sigma(S_1)$ and $\ell \in \sigma(S_2)$, we have $\hbar \in \varphi_+(S_1)$ and $\ell \in \varphi_+(S_2)$ And consequently $p(S_1 - \hbar) < \infty$ and $p(S_2 - \ell) < \infty$. It leads to S_1 has SVEP at \hbar and S_2 has SVEP at ℓ .

Reciprocally, we must prove that $\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1}\otimes\mathcal{S}_{2}) = \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2})\cup\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1}).$ Enough to prove that $\sigma_{ab}(\mathcal{S}_1 \otimes \mathcal{S}_2) \subseteq \sigma_{\mathcal{SF}_+^-}(\mathcal{S}_1 \otimes \mathcal{S}_2).$ Let η ∈ $\sigma(\mathcal{S}_1 \otimes \mathcal{S}_2) \setminus \sigma_{\mathcal{SF}_+}(\mathcal{S}_1 \otimes \mathcal{S}_2)$ then $\eta \in \varphi_+(\mathcal{S}_1 \otimes \mathcal{S}_2)$ and $\operatorname{ind}(S_1 \otimes S_2) \leq 0$. Hence for every factorization $0 \neq \eta = \hbar \ell$ of η where $\hbar \in \sigma(\mathcal{S}_1)$ and $\ell \in \sigma(\mathcal{S}_2)$, and $h \in \varphi_+(\mathcal{S}_1), \ell \in \varphi_+(\mathcal{S}_2)$. Since \mathcal{S}_1 has \mathcal{SVEP} at h and S_2 has SVEP at ℓ then $p(S_1 - h) < \infty$ and $p(S_2 - \ell) < \infty$. Therefore $h \notin \sigma_{ab}(S_1)$ and $\ell \notin \sigma_{ab}(\mathcal{S}_2)$. Thus $\eta \notin \sigma_{ab}(\mathcal{S}_1 \otimes \mathcal{S}_2)$.

Theorem 2.7 Let S_1 and S_2 be continuous linear operator in BL(X₁) and BL(X₂) respectively. If S_1^* and S_2^* have SVEP then $S_1 \otimes S_2$ has property (ao).

Proof: As \mathcal{S}_1^* and \mathcal{S}_2^* have \mathcal{SVEP} then satisfy generalized a-Browder Theorem and consequently \mathcal{S}_1 , \mathcal{S}_2 satisfy a-Browder Theorem. Then by Theorem 1 in [8], a-Browder Theorem holds for $\mathcal{S}_1 \otimes \mathcal{S}_2$, Thus $\sigma_{ab}(\mathcal{S}_1 \otimes \mathcal{S}_2) = \sigma_{\mathcal{SF}_+}(\mathcal{S}_1 \otimes \mathcal{S}_2)$. It leads to property (ao)holds for $\mathcal{S}_1 \otimes \mathcal{S}_2$.

Theorem 2.8 Let $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$, If S_1 and S_2 have $SV \mathcal{EP}$ then $S_1^* \otimes S_2^*$ has property (ao).

Proof: As S_1 and S_2 have SVEP then we obtain by [1, corollary 3.73], S_1^* and S_2^* obey a-Browder Theorem. Consequently, $S_1^* \otimes S_2^*$ obey a-Browder Theorem. That is $\sigma_{ab}(S_1^* \otimes S_2^*) = \sigma_{SF_1^-}(S_1^* \otimes S_2^*)$. Evidently, $S_1^* \otimes S_2^*$ obey property (ao). Duggal in [5, 9]defined the polaroid operator as follows, if every isolated point of the spectrum of S is the pole of resolvent of S, also η is pole of resolvent of S if and only if $0 < p(S - \eta) = q(S - \eta) < \infty$. Or equivalent, an operator $S \in$ BL(X) is called polaroid if and only if there exists $d = d(\eta) \in \mathbb{N}$ such that $H_0(S - \eta) =$ ker $(S - \eta)^{-1}$, for all $\eta \in iso\sigma(S)$. Where $H_0(S - \eta)$ is a quasi-nilpotent part of $S \in$ BL(X)define as follows $H_0(S - \eta) = \{a \in X: \lim_{n \to \infty} \|$

 $(\mathcal{S}-\eta)^{n}a \parallel \overline{n} = 0 \}.$

Definition 2.9 [3] A continuous linear operator $\mathcal{S} \in BL(X)$ is said to have property (SZ) if $\sigma(\mathcal{S}) \setminus \sigma_{\mathcal{SF}_{+}}(\mathcal{S}) = E(\mathcal{S})$.

Theorem 2.10 Let $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$ are polaroid. If S_1^* and S_2^* have SVEP then $S_1 \otimes S_2$ has property (SZ).

Proof: Let's start with the imposition S_1^* and S_2^* have SVEP, then we have

$$\sigma_{\mathsf{W}}(\mathcal{S}_1) = \sigma_{\mathcal{SF}_+^-}(\mathcal{S}_1) = \sigma_{\mathsf{Bw}}(\mathcal{S}_1)$$

 $\sigma_{\mathsf{W}}(\mathcal{S}_2) = \sigma_{\mathcal{SF}_+}(\mathcal{S}_2) = \sigma_{\mathsf{Bw}}(\mathcal{S}_2),$

also we have S_1 , S_2 and $S_1 \otimes S_2$ satisfies Browder's Theorem, thus

$$\sigma_{b}(\mathcal{S}_{1} \otimes \mathcal{S}_{2}) = \sigma_{W}(\mathcal{S}_{1} \otimes \mathcal{S}_{2})$$
$$= \sigma_{W}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2})\cup\sigma_{W}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1})$$
$$= \sigma_{Bw}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2})\cup\sigma_{Bw}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1})$$
$$= \sigma_{Bw}(\mathcal{S}_{1} \otimes \mathcal{S}_{2})$$

 $\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1})\sigma(\mathcal{S}_{2})\cup\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2})\sigma(\mathcal{S}_{1}) = \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1}\otimes\mathcal{S}_{2}).$

As S_1 and S_2 are polaroid implies that $S_1 \otimes S_2$ is polaroid [6, Lemma 2], and consequently Weyl's Theorem holds for $S_1 \otimes S_2$. From [7, Theorem 3.17], generalized Weyl Theorem holds for $S_1 \otimes S_2$, thus $\sigma(S_1 \otimes S_2) \setminus \sigma_{Bw}(S_1 \otimes S_2) = \sigma(S_1 \otimes S_2) \setminus \sigma_{S\mathcal{F}_+}(S_1 \otimes S_2) = E(S_1 \otimes S_2)$. Plainly, $S_1 \otimes S_2$ has property (SZ).

Theorem 2.11 Let $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$ are polaroid. If S_1 and S_2 have SVEP then $S_1^* \otimes S_2^*$ has property (SZ).

Proof: We assume that S_1 and S_2 have SVEP, then we have from [1, corollary 2.5], [1, corollary 3.53], [2, Theorem 2.20]

 $\sigma_{W}(\mathcal{S}_{1}^{*}) = \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1}^{*}) = \sigma_{Bw}(\mathcal{S}_{1}^{*})$

 $\sigma_{\mathsf{W}}(\mathcal{S}_{2}^{*}) = \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2}^{*}) = \sigma_{\mathsf{Bw}}(\mathcal{S}_{2}^{*}),$

also we have S_1^* , S_2^* and $S_1^* \otimes S_2^*$ satisfies a-Browder's Theorem and therefore Browder's Theorem, thus

$$\sigma_{b}(\mathcal{S}_{1}^{*}\otimes\mathcal{S}_{2}^{*}) = \sigma_{W}(\mathcal{S}_{1}^{*}\otimes\mathcal{S}_{2}^{*})$$
$$= \sigma_{W}(\mathcal{S}_{1}^{*})\sigma(\mathcal{S}_{2}^{*})\cup\sigma_{W}(\mathcal{S}_{2}^{*})\sigma(\mathcal{S}_{1})$$
$$= \sigma_{Bw}(\mathcal{S}_{1}^{*})\sigma(\mathcal{S}_{2}^{*})\cup\sigma_{Bw}(\mathcal{S}_{2}^{*})\sigma(\mathcal{S}_{1}^{*})$$
$$= \sigma_{Bw}(\mathcal{S}_{1}^{*}\otimes\mathcal{S}_{2}^{*})$$
$$= \sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1}^{*})\sigma(\mathcal{S}_{2}^{*})\cup\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{2}^{*})\sigma(\mathcal{S}_{1}^{*}) =$$

$$\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1}^{*}\otimes\mathcal{S}_{2}^{*}).$$

As S_1^* and S_2^* are polaroid implies that $S_1^* \otimes S_2^*$ is polaroid [6, Lemma 2], and consequently Weyl's

Theorem holds for $\mathcal{S}_1^* \otimes \mathcal{S}_2^*$. From [7, Theorem 3.17], generalized Weyl Theorem holds for $\mathcal{S}_1^* \otimes \mathcal{S}_2^*$, thus $\sigma(\mathcal{S}_1^* \otimes \mathcal{S}_2^*) \setminus \sigma_{Bw}(\mathcal{S}_1^* \otimes \mathcal{S}_2^*) = \sigma(\mathcal{S}_1^* \otimes \mathcal{S}_2^*) \setminus \sigma_{\mathcal{SF}_+^-}(\mathcal{S}_1^* \otimes \mathcal{S}_2^*) = E(\mathcal{S}_1^* \otimes \mathcal{S}_2^*)$. Plainly, $\mathcal{S}_1^* \otimes \mathcal{S}_2^*$ has property (SZ).

3. PERTURBATIONS

Assume [Q, S] = QS - SQ refer to the commutator of operators $Q, S \in BL(X)$. We assume that Q_1, Q_2 in $BL(X_1)$ and $BL(X_2)$ respectively, are a quasi-nilpotent operators $[Q_1, S_1] = [Q_2, S_2] = 0$ for some operators $S_1 \in BL(X_2)$ and $S_2 \in BL(X_2)$, hence $(S_1 + Q_1) \otimes (S_2 + Q_2) = (S_1 \otimes S_2) + Q$, such that $Q = S_1 \otimes Q_1 + S_2 \otimes Q_2 + Q_1 \otimes Q_2 \in BL(X_1 \otimes X_2)$ is a quasi-nilpotent operator. Remember the definition of isoloid operator, $S \in BL(X)$, is isoloid if iso $\sigma(S) = E(S)$.

Proposition 3.1 Suppose that $S \in B(X)$ be a polaroid operator then $E(S) = \Pi(S)$.

Proof: As always we have $\Pi(S) \subseteq E(S)$, for every operators S. Now, let $\eta \in E(S)$ that is $\eta \in iso \sigma(S)$, since S is a polaroid then $\eta \in \Pi(S)$. Therefore $E(S) = \Pi(S)$.

Theorem 3.2 Suppose that Q_1 , Q_2 in BL(X₁) and BL(X₂) respectively, be a quasi-nilpotent operators $[Q_1, S_1] = [Q_2, S_2] = 0$ for some operators $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$. If $S_1 \otimes S_2$ polaroid then property (ao) holds for $S_1 \otimes S_2$ implies $(S_1 + Q_1) \otimes (S_2 + Q_2)$ satisfies property (ao).

Proof: Observe that $\sigma(S_1 \otimes S_2) = \sigma((S_1 + Q_1) \otimes (S_2 + Q_2))$, $\sigma_{S\mathcal{F}_+}(S_1 \otimes S_2) = \sigma_{S\mathcal{F}_+}((S_1 + Q_1) \otimes (S_2 + Q_2))$, and that the perturbation of an operator by commuting quasi-nilpotent has $SV\mathcal{EP}$ if and only if the operator has $SV\mathcal{EP}$. If property (SZ) holds for $S_1 \otimes S_2$, hence

 $\sigma(S_1 \otimes S_2) \setminus \sigma_{S\mathcal{F}_+}(S_1 \otimes S_2) = \Pi_a(S_1 \otimes S_2)$

$$\sigma((\mathcal{S}_1 + \mathcal{Q}_1) \otimes (\mathcal{S}_2 + \mathcal{Q}_2)) \setminus \sigma_{\mathcal{SF}_+}((\mathcal{S}_1 + \mathcal{Q}_1) \otimes (\mathcal{S}_2 + \mathcal{Q}_2)) = \Pi_a(\mathcal{S}_1 \otimes \mathcal{S}_2),$$

we ought prove that $\Pi_a(\mathcal{S}_1 \otimes \mathcal{S}_2) = \Pi_a((\mathcal{S}_1 + \mathcal{S}_2))$ $Q_1 \otimes (S_2 + Q_2)$. Let $\eta \in \prod_a (S_1 \otimes S_2)$, it leads to $\eta \in \sigma \big((\mathcal{S}_1 + \mathcal{Q}_1) \otimes (\mathcal{S}_2 + \mathcal{Q}_2) \big)$ and η ∈ $\sigma_{\mathcal{SF}_{\pm}}((\mathcal{S}_1 + \mathcal{Q}_1) \otimes (\mathcal{S}_2 + \mathcal{Q}_2)),$ also η ∈ iso $\sigma(S_1 \otimes S_2)$. Clearly, if $\eta \in i$ so $\sigma(S_1 \otimes S_2)$ hence $\mathcal{S}_1^* \otimes \mathcal{S}_2^*$ has \mathcal{SVEP} at η and therefore $\Pi_{a}(\mathcal{S}_{1} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{1} \otimes \mathcal{S}_{2}), \text{also we have } (\mathcal{S}_{1}^{*} + \mathcal{S}_{2}) = \Pi(\mathcal{S}_{1} \otimes \mathcal{S}_{2}), \text{also we have } (\mathcal{S}_{1}^{*} + \mathcal{S}_{2}) = \Pi(\mathcal{S}_{1} \otimes \mathcal{S}_{2}), \text{also we have } (\mathcal{S}_{1}^{*} + \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also we have } (\mathcal{S}_{2}^{*} + \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also we have } (\mathcal{S}_{2}^{*} + \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also we have } (\mathcal{S}_{2}^{*} + \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also we have } (\mathcal{S}_{2}^{*} + \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_{2} \otimes \mathcal{S}_{2}) = \Pi(\mathcal{S}_{2} \otimes \mathcal{S}_{2}), \text{also have } (\mathcal{S}_$ $Q_1^* \otimes (S_2^* + Q_2^*)$ has SVEP at η , Implies that $\eta \in \text{iso } \sigma((\mathcal{S}_1 + \mathcal{Q}_1) \otimes (\mathcal{S}_2 + \mathcal{Q}_2)).$ Since $\mathcal{S}_1 \otimes \mathcal{S}_2$ be a polaroid it leads to $S_1 \otimes S_2$ an isoloid then $\eta \in E((S_1 + Q_1) \otimes (S_2 + Q_2)),$ consequently by above proposition we get $\eta \in \Pi((S_1 + Q_1) \otimes (S_2 + Q_1))$ (Q_2)). Therefore, $(S_1 + Q_1) \otimes (S_2 + Q_2)$ satisfies property (ao).

Theorem 3.3 Suppose that Q_1 , Q_2 in BL(X₁) and BL(X₂) respectively, be a quasi-nilpotent operators $[Q_1, S_1] = [Q_2, S_2] = 0$ for some operators $S_1 \in BL(X_1)$ and $S_2 \in BL(X_2)$. If $S_1 \otimes S_2$ isoloid then property (SZ) holds for $S_1 \otimes S_2$ implies $(S_1 + Q_1) \otimes (S_2 + Q_2)$ satisfies property (SZ).

Proof: Observe that $\sigma(\mathcal{S}_1 \otimes \mathcal{S}_2) =$ $\sigma_{\mathcal{SF}_{+}^{-}}(\mathcal{S}_{1} \otimes \mathcal{S}_{2}) =$ $\sigma((\mathcal{S}_1+\mathcal{Q}_1)\otimes(\mathcal{S}_2+\mathcal{Q}_2)),$ $\sigma_{\mathcal{SF}_{1}^{-}}((\mathcal{S}_{1}+\mathcal{Q}_{1})\otimes(\mathcal{S}_{2}+\mathcal{Q}_{2})),$ and that the perturbation of an operator by commuting quasinilpotent has SVEP if and only if the operator has SVEP. If property (SZ) holds for $S_1 \otimes S_2$, hence $\sigma(\mathcal{S}_1 \otimes \mathcal{S}_2) \setminus \sigma_{\mathcal{SF}_+^-}(\mathcal{S}_1 \otimes \mathcal{S}_2) = \mathcal{E}(\mathcal{S}_1 \otimes \mathcal{S}_2)$ $\sigma((\mathcal{S}_1 + \mathcal{Q}_1) \otimes (\mathcal{S}_2 + \mathcal{Q}_2)) \setminus \sigma_{\mathcal{SF}_+}((\mathcal{S}_1 + \mathcal{Q}_2)) \otimes (\mathcal{S}_2 + \mathcal{Q}_2))$ $Q_1) \otimes (S_2 + Q_2) = \mathbb{E}(S_1 \otimes S_2),$ rest we prove that $E(S_1 \otimes S_2) = E((S_1 +$ $Q_1 \otimes (S_2 + Q_2)$. Let $\eta \in E(S_1 \otimes S_2)$, it leads to $\eta \in \sigma \big((\mathcal{S}_1 + \mathcal{Q}_1) \otimes (\mathcal{S}_2 + \mathcal{Q}_2) \big)$ and η ∉ $\sigma_{\mathcal{SF}_{+}}((\mathcal{S}_{1}+\mathcal{Q}_{1})\otimes(\mathcal{S}_{2}+\mathcal{Q}_{2})),$ also η ∈ iso $\sigma(S_1 \otimes S_2)$. Clearly, if $\eta \in i$ so $\sigma(S_1 \otimes S_2)$ hence $\mathcal{S}_1^* \otimes \mathcal{S}_2^*$ has \mathcal{SVEP} at η and therefore $(\mathcal{S}_1^* + \mathcal{S}_2)$ $Q_1^*) \otimes (S_2^* + Q_2^*)$ has SVEP at η . Implies that $\eta \in \text{iso } \sigma((S_1 + Q_1) \otimes (S_2 + Q_2)).$ Since $S_1 \otimes S_2$ isoloid then $\eta \in E((S_1 + Q_1) \otimes (S_2 + Q_2)).$

References

- [1] P. Aiena, Fredhlm and local Spectral Theory, with Applications to Multipliers, Kluwer, 2004.
- [2] P. Aiena, J.R.Guillen and P.Pena, Prperty (R)for bounded linear operator, Mediterr, J. math. 8(2011), 491-508.
- [3] A.A. Buthainah; A.R. Zaman, New Properties and their relation to type Weyl-Browder Theorems, Math. Vol. 7, Issue 2, February 2018, 1502-1506.
- [4] A. Brown and C. Pearcy, Spectra of tensor product of operators, Proc. Am. Math. Soc. 17(1966), 162-166.
- [5] B. P. Duggal, Polaroid operators, SVEP and perturbed Browder, Weyl Theorems, Rend. Circ. Mat. Palermo, 56 (2007), 317-330.
- [6] B. P. Duggal, Tensor product and property (w), Rendiconti del Circolo Matematico di Palermo 60(2011), 23-30.
- [7]B. P. Duggal, polaroid operators and generalized Browder-Weyl theorems, 8 Redwood Grove, London W5 4SZ, United Kingdom*.
- [8] B. P. Duggal, S.V Djordjevic and C.S. Kubrusly, On a-Browder and a-Weyl spectra tensor product, Rendiconti del Circolo Matematico di Palermo 59(2010), 473-481.
- [9] H. Heuser, Functional Analysis, John Wiley & Sons Inc, New York, 1982.
- [10]T. Ichinose, Spectral properties of linear operators I, Trans. Amer. Math. Soc. 235(1978), 75-113.
- [11] T. Ichinose, Spectral properties of linear operators II, Trans. Amer. Math. Soc. 237(1978), 223-254.
- [12] C.S. Kubrusly and B. P. Duggal, On Weyl and Browder spectra of tensor product, Glasgow Mathematical Journal 50(2008), 289-302.