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Abstract: In this paper a predator-prey food chain model with 

modified ratio-dependent and Sokol-Howell functional response is 

proposed and discussed. The model is observed to be dissipative. 

The stability of the equilibrium points of the three species system is 

analyzed. The flow of the model is explored theoretically with two 

functional responses and numerically with three ones.  
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1. Introduction 

As we all know that periodic and chaotic environmental 

models are eccentric in behavior. The permanence and 

extinction in predator-prey with ratio-dependent received 

attention by many ecological authors, see [1,3-6,11]. Jost and 

Arditi proves that prey and ratio-dependent systems can fit 

well with time arrangement created by each other [1]. 

Gakkhar and Naji  in [6] studied the chaos in ratio-dependent 

model. Guin and Mandal [3] examined the flow of reaction-

diffusion in ratio-dependent systems with intraspecific 

competition. Sokol-Howell functional response of the form 

2xh

wx


is studied by many ecologists; see [7-10]. In this paper, 

we modify the model of [8] by using the modified ratio-

dependent Sokol-Howell functional response 22

2

xhy

wxy


 in the 

place of the standard Sokol-Howell. The dynamics of the 

three-species predator-prey is studied (Stability analysis, 

Numerical exploration, results and conclusions), which 

shows the significance of the system beneath consideration. 

2. The Mathematical Model 

 Consider the three species food chain model at time  )(t  

consisting of the prey which is denoted by )(tx , the middle 

predator denoted by )(ty  and the top  predator whose  

denoted by )(tz . The middle predator y preys on its only 

food x  at the first level according to modified ratio-

dependent Sokol-Howell functional response, while the top 

predator z  preys on y  at the second level according to the 

standard Sokol-Howell. The dynamics of the  model can be 

represented by: 

   ),,,(122

1

2

12

11 zyxG
xyh

xyw
xbxa

dt

dx



  

   ),,,(22

3

3

122

2

2

2 zyxG
yh

yzw
yd

xyh

xyw

dt

dy






  

   ).,,(322

4

4 zyxGzd
yh

yzw

dt

dz



                           (1) 

 

The functional response in system (1) is proposed by 

removing the prey x   and put the ratio 
y
x  in Sokol-Howell 

response.  The solution of the system (1) exists and is unique 

since all the functions iG  )3,2,1( i are Lipschitzian on 

  0,0:,, 33  yxRzyxR 0, z .  Here the 

positive constants jdba ,, 11  )2,1( j kh and kw  

)4,3,2,1( k   denote to: 
1a  is the growth rate of the 

prey x , 1b  represents the intraspecific competition   of prey 

x , kw 's are the maximum values attainable by each  per 

capita rate, kh ’s are the half-saturation constant, jd ’s  

represent the death rate of the middle and the top predators.  

 

Note: System (1) is observed to be dissipative, see [8]. 

3. Stability Analysis 

In this section, the stability of the equilibrium points of 

model (1) is discussed. The points )0,0,0(0 E and  

)0,0,(
1

1

1 b

a
E   are always exist. The third equilibrium point 

given by )0,,( **2 yxE   exists where 
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with the following condition provided that 
1
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a
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For the stability analysis of 0E , 1E  and  2E  see [8].                                                                 



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS-2019  

[54] 

 

Now, the positive equilibrium point ),,( ***

3 zyxE   

exists if there is appositive solution to the following 

equations in the 
3. RInt . 
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From the third equation of (4) we have 
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so that, 
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Hence, if the term 04 4

2

2

2

4  hdw , then there is no 

positive solution to Eq. (5) and if 04 4

2

2

2

4  hdw , then 

there are two positive solution to Eq. (5). The last case 

occurs if the following condition holds 
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Then, there is only one solution given by 
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From the first equation of (4) 
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Equation (8) has one positive root depending on Descartes’s 

rule if 

                               111 haw  .                                          (9) 

Again, from the second equation of (4) 
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Now, in addition to condition (6) and (9) the positive point  

3E  exists if the following condition holds 
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The varational matrix ),,( zyxV   is computed for system 

(4) as:    

   
             3,2,1,,,  jimzyxV ij ,                           (12) 
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The characteristic equation of the above matrix (12) can be 

written as: 
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of  ijm , where 
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Now, straightforward computations show that ,01 H  
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According to Routh-Hurwitz criterion, ),,( ***

3 zyxE  is 

locally asymptotically stable in the 
3. RInt  provided 

conditions (13-17) hold, see [2, 13]. 

Now, for the global asymptotic stability we didn’t find a 

suitable Lyapunov function and we discuss the global 

dynamics numerically in the next section. 

4. Numerical Exploration 

The Runge-Kutta method of six order is used to solve the 

system (1) numerically, see [12]. There are two cases here to 

discuss. The first case of system (1) itself, and the second 

case we replacing the Sokol-Howell functional response by 

Leslie-Gower and we run the new system numerically so that  

to analyze the behavior of modified ratio-dependent 

functional response more.    

4.1 Modified Ratio-Dependent with Sokol-Howell    

For the following data set 

 

20.01 a , 0007.01 b , 051.01 w , 27.02 w , 

21.03 w , 095.04 w , 0033.01 d , 005.02 d , 

22.021  hh ,  0.13 h .                                          (18) 

 

The attractors for model (1) are plotted depending on the 

half-saturation constant 
4h  of the top predator, since we 

discussed and other authors the effects of the growth rate, 

death rate and the intraspecific competition in many papers, 

see [3,8,9].   

 
       Figure 1. 3D of system (1) period 2 with data (18)  

            and 20.14 h  with fading in the top predator. 

 

For 4h  with data (18), system (1) observed to be with period 

2 and vanishing of the top predator as it shown in figure 1. 

Decreasing the value of  
4h  from 0.9 to 0.5, then model (1) 

is periodic with period 1 as plotted in figure 2. Decreasing 

4h  a little bit more for 4.04 h , then system (1) food 

chain is stable as it shown in figure 3.  

 
Figure 2. 3D of system (1) periodic with data (18) and  

               5.04 h  with extinction in the top predator.   

 

 

               Figure 3. 3D of model (1) with data (18) stable for                          

4.04 h   

4.2 Modified Ratio-Dependent with Leslie-Gower   

The food chain system (1) is modified numerically by putting 

the Leslie-Gower in the place of Sokol-Howell in third 

equation of system (1) and the top predator equation written 

as: 

                 
yh
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dt

dz
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and also we don’t forget to replace 
2y  in the denominator of 

last term of the middle predator by y and the last term 

change to 
yh

yzw

3

3
. The model in [8], we used the standard 

Sokol-Howell with Leslie-Gower and the model exhibits 

chaotic dynamics. Now, for the following data set 

 

50.21 a , 5.01 b , 25.01 w , 5.72 w , 

21.03 w , 925.14 w , 0042.01 d , 005.03 c , 

0.2021  hh ,  0.1043  hh ,                             (20) 
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We run the Lesile-Gower with modified ratio-dependent for 

data (20) and our target to see the changes in the behavior of 

the system dynamics and also comparing our results in 

section 5 with the model in [8].  

 

  Figure 4(a). 3D of modified ratio-dependent and 

Leslie-Gower with data (20), stable with persistence of 

the prey x , middle predator y  and the top predator z .   

               
Figure 4(b).  Time series of figure (5a).  

 

 
            Figure 4(c). 2D xy-plane of figure (5a), stable of the 

          prey and periodic turn to stable of the middle predator. 

 

 

 

 

 

 

 

 
             Figure 4(d). 2D yz-plane of figure (5a) periodic 

                                  change to stable.  

 

5. Results and Conclusions 

The model (1) is investigated theoretically and figures of the 

attractors are blotted in Figs. 1-3 with data (18) for the 

modified ratio-dependent with Sokol-Howell and in Figs. 

4(a-d) with data (20) for modified ratio-dependent with 

Leslie-Gower. Now, for data (18) we depend on the control 

parameter the half-saturation level 
4h  of the top predator 

while we depend in data (20) completely, and results after 

that are obtained: 

1) For the value of 2.14 h  system (1) shows the 

periodic as in Fig. 1, while decreasing the value of 

4h  from 0.9-05 and 0.4 change the system to less 

periodic and then to stable as blotted in Fig. 2-3, so  

the saturation level 
4h  is the control parameter of 

the food chain (1). 

2) The permanence of the periodic of the system with 

fading of the top predator z , so that the model is 

not complicated as with standard Sokol-Howell 

functional response. 

3) Changing the third term of the model from Sokol-

Howell to Leslie-Gower with data (20) turn the 

system from periodic to stable with coexisting of all 

the species of the model and less density of the prey 

x  as it plotted in Fig. 4. 

4) The model in [8], we used the standard Sokol-Howell 

with Leslie-Gower and the model exhibits chaotic 

dynamics while system (1) described above is 

periodic with nearly the same data. 

5)  A three of functional responses are used here after 

putting the Leslie-Gower in the last equation of (1) 

and Holling type II in the place of Sokol-Howell in 

the second equation of system (1). 
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