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Abstract: The dynamics of discrete-time prey-predator 

model are studied and investigated. The model has four 

fixed points. The origin fixed point is always exists while 

the others are exist under some conditions. The conditions 

that required achieving local stability of all fixed points are 

also set.  The results indicate that the model has a flib 

bifurcation which found by varying the prey intrinsic 

growth parameter via pray and predator populations, 

respectively. Finally, numerical simulations not only 

illustrate our results, but also exhibit the complex dynamic 

behavior and chaotic.  

Keywords: Discrete model, bifurcation theory, 

Competition. 

1-Introduction: 

Competition is an interaction between organisms or species in 

which both species are harmed. Competition may be for territory 

which is directly related to food resources. Some interesting 

phenomena have been found from the study of 

practical competition models. Hsu et al. [1] 

concerned with the growth of two predator species 

competing exploitatively for the same prey 

population. The predators feed on the prey with a 

saturating functional response to their prey density. 

The existence of species in the real world is not a 

lone so that the interaction, mutualism and 

competitive mechanisms are taken place. For that 

researchers have been investigated extensively in the 

recent years. They formed their models by using a set 

of differential equations [3,4,5]. Many authors have 

been carried out studying the chaotic dynamics that 

occur in multispecies continues time as well as 

discrete time prey-predator models [6,7,8]. In 

[9,10,11,12,13] authors have been given a 

modification of the system using nonlinear difference 

equations or partial differential equations . 

Another example of competition is in Holt et 

al. [2]. They focused on the competition between two 

or more victim species that share a natural enemy. 

They also reviewed empirical examples of apparent 

competition in phytophagous insect hosts attacked by 

polyphagous parasitoids and they developed models 

of apparent competition in host-parasitoid systems. 

They found that the apparent competition is 

particularly likely in insect assemblages because 

parasitoids can limit their hosts to levels at which 

resource competition is unimportant. 

This paper is organized as follows: in 

Section 2, the discrete prey–predator model is 

formulated and investigated, and then the conditions 

of existence and local stability of its fixed points are 

derived. In Section 3, we discussed that the model 

undergoes flip bifurcation in the interior 𝑅2
+  , by 

varying some values of parameters. Also, the 

numerical simulations are done to confirm the 

analytic results, such as the local stability as well as 

the bifurcation diagrams, phase portraits. Finally, in 

section 4 the conclusions are drawn.   

2-The model and the analysis of its fixed 

points: 

Consider the following discrete prey-predator model  
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{
𝑥𝑡+1 = 𝑎𝑥𝑡 (1 −

𝑥𝑡

1+𝑦𝑡
)

𝑦𝑡+1 = 𝑐𝑦𝑡 (1 −
𝑦𝑡

1+𝑥𝑡
)

  (1) 

This model  describes the interactions between  two 

populations with the initial conditions x(0)>0 , 

y(0)>0 , where the x(t) and y(t)  denote the number of 

prey and the number pf predator at time t, 

respectively. The parameters 𝑎 and 𝑐 are the growth 

rate of the two species, respectively. The possible 

fixed points are obtained by solving the following 

algebraic equations: 

{
𝑥 = 𝑎𝑥 (1 −

𝑥

1+𝑦
)

𝑦 = 𝑐𝑦 (1 −
𝑦

1+𝑥
)

   

With simple computation we get the following fixed 

points: 

1) 𝑒1 = (0,0) is the origin fixed point which is    

always exists. 

2) 𝑒2 = (𝑟1, 0), where 𝑟1 =
𝑎−1

𝑎
 , is the first 

axial fixed point which means the prey population 

exist with absence of predator one. 

3) 𝑒3 = (0, 𝑟2), where 𝑟2 =
𝑐−1

𝑐
 ,  is the second 

axial fixed point which means the predator 

population exist with absence of prey one. 

4) 𝑒4 = (𝑥∗, 𝑦∗) = (
(1−𝑎)(2𝑐−1)

1−(𝑎+𝑐)
,

(1−𝑐)(2𝑎−1)

1−(𝑎+𝑐)
)  is 

the unique positive fixed point which exist if and 

only if 𝑎, 𝑐 > 1. 

For studying the stability of each fixed point 

we shall obtain the variation matrix and its 

characteristic equation. In general with (𝑥, 𝑦)  is a 

fixed point of model (1), the Jacobian matrix at  

(𝑥, 𝑦) can be written as; 

𝐽(𝑥, 𝑦) = (
𝑗11       𝑗12

𝑗21         𝑗22

)    

  

Where  

𝑗11 = 𝑎 −
2𝑎𝑥

1+𝑦
  

 𝑗12 =
𝑎𝑥2

(1+𝑦)2  

𝑗21 =
𝑐𝑦2

(1+𝑥)2   

𝑗22 = 𝑐 −
2𝑐𝑦

1+𝑥
  

and characteristic equation of 𝐽((𝑥, 𝑦)) is: 

𝐹(𝜆) = 𝜆2 + 𝑃𝜆 + 𝑄                   (2) 

Where 𝑃 = 𝑐 + 𝑎 − (
2𝑐𝑦

1+𝑥
+

2𝑎𝑥

1+𝑦
) and 

 𝑄 = (− 2𝑎𝑥

𝑦 + 1
 + 𝑎) (− 2𝑐𝑦

𝑥 + 1
 + 𝑐) −

𝑎𝑐𝑥2𝑦2

(𝑥 + 1)2(𝑦 + 1)2
 

Hence the system (1)  is a dissipative system if 

|(− 2𝑎𝑥

𝑦+1
 + 𝑎) (− 2𝑐𝑦

𝑥+1
 + 𝑐) −

𝑎𝑐𝑥2𝑦2

(𝑥 + 1)2(𝑦 + 1)2| < 1 [12]. 

Let 𝜆1 and  𝜆2  be the two roots of 

equation(2), which are called the eigenvalues of the 

Jacobian matrix at any point. We recall some 

definitions of topological types for a fixed point. A 

fixed point is called a sink point if | 𝜆1 |  <  1 and 

| 𝜆2|  <  1, so the sink  point is locally asymptotically 

stable. A fixed point is called a source point if 

|𝜆1|  > 1 and |𝜆2|  > 1, so the source point is locally 

unstable. A fixed point is called a saddle  point if 

|𝜆1|  > 1 and |𝜆2|  < 1(or | 𝜆1 |  <  1 and |𝜆2|  > 1). 

And a fixed point is called non-hyperbolic point if 

either |𝜆1|  =  1  or |𝜆2|  =  1 [12]. The next 

propositions give the behavior dynamics of the fixed 

point 𝑒1 as well as 𝑒2  and 𝑒3. 
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Proposition 2.1: The origin fixed point 𝑒1 is: 

a) Sink point if 𝑎 < 1 and 𝑐 < 1; 

b) Source point if 𝑎 > 1 and 𝑐 > 1; 

c) Non-hyperbolic point if 𝑎 = 1  or 

𝑐 = 1 ; 

d) Saddle point otherwise. 

Proof: It is clear that the Jacobian matrix at 

𝑒1 is given as follows: 

 𝐽𝑒1
= (𝑎                             0

0                              𝑐
)         

Obviously, the eigenvalues of the 𝐽𝑒1
 are   𝜆1 = 𝑎 and 

𝜆2 = 𝑐, therefore all results can be obtained. 

Proposition 2.2: For the fixed points 𝑒2  and 𝑒3  we 

have: 

1- For the prey axial fixed point 𝑒2 is: 

a) Sink  point if 1 < 𝑎 < 3 and 𝑐 < 1; 

b) Source point if 𝑎 > 3 and 𝑐 > 1; 

c) Non-hyperbolic point if either 

 𝑎 = 1or 3 or 𝑐 = 1 ; 

d) Saddle   point otherwise. 

2- For  the predator fixed points there exist 

at least four different topological types 

these are: 

a) Sink point if 𝑎 < 1 and 1 < 𝑐 < 3; 

b) Source point if 𝑎 > 1 and 𝑐 > 3; 

c) Non-hyperbolic point if  

𝑎 = 1 either = 1𝑜𝑟3 ; 

d) Saddle point otherwise. 

Proof: It is clear that the Jacobian matrices at 

𝑒2and 𝑒3 are given by: 

𝐽𝑒2
= (

𝑎−2𝑎𝑟1                           𝑎𝑟1
2

0                                     𝑐
)          

                  𝐽𝑒3
= (

𝑎                                     0

𝑐𝑟1
2                  𝑐−2𝑐𝑟2

)      

Hence, the eigenvalues of the 𝐽𝑒2
 

are   𝜆1 = 2 − 𝑎  and 𝜆2 = 𝑐  while the 

eigenvalues of the 𝐽𝑒3
 are   𝜆1 = 𝑎  and 

𝜆2 = 2 − 𝑐  therefore all results can be 

obtained, respectivaly. 

Before studying the behavior of the unique 

positive fixed point 𝑒4 , we need the following 

Lemma which appeared  in[13] 

Lemma 2.3 : Let 𝐹(𝜆) = 𝜆2 + 𝑃 𝜆 +  𝑄. Suppose 

that 𝐹(1)  > 0, 𝜆1 and 𝜆2 are the two roots of 

𝐹(𝜆)  =  0. Then 

(i) |𝜆1|  < 1 and |𝜆2|  < 1 if and only if 𝐹(−1)  > 0 

and 𝑄 < 1; 

(ii)|𝜆1|  < 1 and|𝜆2|  > 1 (or|𝜆1|  > 1 and |𝜆2|  < 1) 

if and only if 𝐹 (−1)  < 0; 

(iii) |𝜆1|  > 1 and |𝜆2|  > 1 if and only if 

 𝐹(−1)  > 0and 𝑄 > 1; 

(iv) 𝜆1  =  −1 and 𝜆2  ≠  1 if and only if 

 𝐹(−1)  =  0 and 𝑃 ≠  0, 2. 

Proof: see [13]. 

In order to discuss the dynamics behavior of 

the positive fixed point 𝑒4 , we need the  Jacobian 

matrix at  𝑒4  which is given by  

 𝐽(𝑥, 𝑦) = (
2−𝑎−𝜆                               

(𝑎−1)2

𝑎
(𝑐−1)2

𝑐
                             2−𝑐−𝜆

)  

Where P and Q in equation (2) are  

𝑃 = 𝑎 − 4 + 𝑐 and 

 𝑄 = (𝑎 − 2)(𝑐 − 2) −  
(𝑎−1)2(𝑐−1)2

𝑎𝑐
 

Now, the next proposition gives the 

dynamics of the positive fixed point. 
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Proposition 2.4: The unique positive fixed point𝑒4 

is: 

1- Sink point if and only if the 𝑎 ∈

(𝐴,∞) ∩ 𝐼 ∩ [(0, 𝐵2) ∪ (𝐵1,∞)] 

 

2- Source point if and only if the 𝑎 ∈

(𝐴,∞) ∩ 𝐼 ∩ (𝐵2, 𝐵1) 

 

3- Saddle point if 𝑎 ∈ (𝐴,∞) ∩

[(0, min{𝑏1, 𝑏2}) ∪ (max{𝑏1, 𝑏2} ,∞)]. 

 

4- Non-hyperbolic point if  𝑎 ∈ (𝐴1,∞)    

and either 𝑎 ≠ 4 − 𝑐 𝑜𝑟 𝑎 ≠ 2 − 𝑐 ; 

Where 

𝐴 =
2−𝑐+√(𝑐−2)2+4(𝑐−1)

2
 

,𝐵1 =
2−𝑐+√(𝑐−2)2−4(𝑐−1)2

2
, 

𝐵2 =
2 − 𝑐 − √(𝑐 − 2)2 − 4(𝑐 − 1)2

2
     

𝐼 = (min{𝑏1, 𝑏2} , max{𝑏1, 𝑏2}),  

𝑏1 =
−𝑘1+√𝑘1

2−4𝑘2

2
  and 𝑏2 =

−𝑘1−√𝑘1
2−4𝑘2

2
 

while 𝑘1 =
𝑐2−5𝑐−2

𝑐+1
 and 𝑘2 =

(𝑐−1)2

𝑐+1
. 

Proof: We will apply  Lemma 2.3. 

Therefore: 

𝐹(1) = 1 + 𝑃 + 𝑄 = 1 + 𝑎 − 4 + 𝑐 +

(𝑎 − 2)(𝑐 − 2) −
(𝑎−1)2(𝑐−1)2

𝑎𝑐
> 0   

That implies 𝑎2 + (𝑐 − 2)𝑎 − (𝑐 − 1) > 0 . 

Thus 𝐹(1) > 0 if and only if 𝑎 ∈ (𝐴1,∞). 

Now, we have to show that 𝐹(−1) > 0 and 

𝑄 < 1. So that, we have the following steps: 

𝐹(−1) = 1 − 𝑎 + 4 − 𝑐 + (𝑎 − 2)(𝑐 −

2) −
(𝑎−1)2(𝑐−1)2

𝑎𝑐
> 0    

That implies 𝑎2 +
(𝑐2−5𝑐−2)

𝑐+1
𝑎 +

(𝑐−1)2

𝑐+1
< 0 . 

Therefore 𝐹(−1) > 0 if and only if when 

𝑎 ∈ 𝐼 

It is clear that 𝑄 = (𝑎 − 2)(𝑐 − 2) −
(𝑎−1)2(𝑐−1)2

𝑎𝑐
< 1  if and only if  𝑎2 −

(2 − 𝑐)𝑎 + (𝑐 − 1)2 > 0  therefore  𝑄 < 1  if 

𝑎 ∈ (∞, 𝐵2) ∪ (𝐵1,∞) 

According to the Lemma 2.3(1), 𝑒4 is sink 

when 

𝑎 ∈ (𝐴1,∞) ∩ 𝐼 ∩ [(0, 𝐵2) ∪ (𝐵1,∞)] 

The proof of the other cases can be easily 

obtained. 

3-Numerical simulation: 

 To provide some numerical evidence for the 

qualitative dynamic behavior of the model (1),so that 

at different set of values the local behavior of the all 

fixed points are investigated numerically. For the 

fixed point 𝑒1  we choose the value of 𝑎 = 0.7  and   

𝑐 = 0.8   as well as we choose the values 𝑎 = 1.7   

and   𝑐 = 0.8   and  𝑎 = 0.7   and   𝑐 = 1.8   for the 

fixed points  𝑒2  and 𝑒3, respectively . Figures 1, 2, 

and 3 indicate the stability of e1,𝑒2  and 𝑒3  with the 

initail value (0.6,0.5). For the positive fixed point the 

values of 𝑎 = 1.8   and   𝑐 = 1.2   are chosen that 

satisfy the condition 1 in proposition 2.4. Figure 4 

shows the local stability of the e4=(0.55,0.26) with 

initial value (0.6,0.5).   

 

Figure 1: This figure shows the stability of e1 

according to the proposition 2.1. 

e1 
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Figure 2:The  stability of e2 under the conditions of 

the proposition 2.2 

 

Figure 3: This figure shows the stability of e3 

according to the proposition 2.2 

 

Figure 4: The stability of the positive fixed point e4 

according to the proposition 2.4 

In different point of view, we study the 

phase portrait of the model (1) when we change only 

the parameter 𝑎  via prey population and fix the 

others. To study the behavior of the model (1) when 

the parameter varied in the interval [0.75,3.95] one 

can consider the initial condition (0.6, 0.6) which is 

varied in the basin of attraction of positive fixed point 

𝑒4. When the control parameter varies, the stability of 

a periodic solution may be lost through various types 

of bifurcations and it gives the stable, period-2, 

period-4,perod-8,period-16,period-32 then chaotic 

Now, without loss of generality we fix the 

parameters𝑐 =  1.2, and we assume that 𝑎 is varied 

inside the interval[0.75,3.95]. The phase portraits are 

considered in the Figures 5,6,7,8,and 9: 

 

Figure5: Bifurcation diagram for system (1) versus 𝑎 

via prey population. 

 

 

 

P
rey p

o
p

u
latio

n
 

𝑎   

e2 

e3 

e4 



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS-2019  

 

[51] 
 

 

Figure6: These phase diagrams when 

𝑎 = 2,3.24, 3.5001, 3.544, 3.556, 3.5587,  

respectively. 

 

           

Figure7 : These phase diagrams gives the 

chaotic when 𝑎 = 3.564. 

 

The second numerical case starts when we 

will study the phase portrait of the model (1)as only 

the parameter 𝑎 via predator population and fix the 

others. To study the behavior of the model (1) when 

the parameter varied in the interval [0.9,3.95]  one 

can consider the initial condition (0.6, 0.6) situated in 

the basin of attraction of fixed point 𝑒4 . When the 

control parameter varies, the stability of a periodic 

solution may be lost through various types of 

bifurcations and it gives the stable, period-2, period-4  

then chaotic. 

Now, without loss of generality we fix the parameters 

𝑐 =  1.2 , and we assume that 𝑎 ∈ [0.9,3.95] . The 

phase portraits are considered in the following 

Figures: 

 

Figure 8: Bifurcation diagram for system (1) versus 𝑎 

via predator population. 

 

 

 

Figure 9: These phase diagrams give when 𝑎 =

2.33, 3.3, 3.507, 3.66, respectively. 
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4-Conclusion: 

 In this paper, the local stability of all 

possible fixed points of a two dimensional discrete 

time prey-predator model has been studied and 

discussed. The chaotic dynamics and bifurcation of 

the model have been investigated. Basic properties of 

the model have been analyzed by means of phase 

portrait, and bifurcation diagrams. Under certain 

parametric conditions, the interior fixed point enters a 

flib bifurcation phenomenon. This could be very 

useful for the biologists as well as mathematicians 

who work with discrete-time prey–predator models. 
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