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Abstract

In this paper we introduce the concepts of the T-direct sum and T-extending modules and we give some basic properties of
these types of modules. Also we define the relations a+ and S on the set of submodules containing T of a module M and

we give some basic properties.
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1- Introduction

In this paper, all rings are associative with identity and
all modules are unitary left R-modules. Recall that a
submodule A of an R-module M is essential submodule
of M{denoted by A < . M}, if for every B < M,
A N B=0 implies that B = 0.

A submodule B of a module M is called complement for
a submodule A of M if it is maximal with respect to the
property that A N B = 0. More details about essential
submodules and complement can be found in [1] .

A module M is an extending module (denoted by
CS- module), if every submodule of M is essential in a
direct summand of M, see [2, 3].

Let M be a module. Recall the following relation on the
set of submodules of M : A a B if there exists a
submodule C of M such that A <, Cand B <. C, see
[4]. Let M be a module. Recall the following relation on
the set of submodules of M: AgBif ANB<.Aand
A N B < B, see [4]. In [5], the authors introduced the
definition of T—essential (complement) submodules as
follows: Let T £ M, a submodule A of M is called
T—essential submodule of M {denoted by A < 1,5 M},
provided that A < T and for each submodule B of M ,
A N B < T implies that B < T. A submodule B of M is
called a T —complement for a submodule A in M if B is
maximal with respect to the property that AN B <T. In
[6], we introduce the definition of T-closed submodules
as follows: Let T, A and B be submodules of a module
M . A is called a T-closed submodule of M (denoted by
A <1. M), if A< 1, B implies that A + T = B, for every
submodule B of M.

In section 2 , we will introduce the definition of T-direct
sum modules as follows : Let T, A and B be submodules
of a module M. M is called T-direct sum of A and B
(denotedby M=A @:B). IFTM=A+Band ANB<T.

In this case, each of A and B is called a T-direct
summand of M .We prove that Let T, A and B be
submodules of a distributive module M. If B is a
T-complement for A in M, then A &1 B <1, M, see
proposition (2.11). Also we introduce the definition of
T-extending modules as follows:

Let T be a submodule of a module M. We say that M is
T-extending module (denoted by T-CS modules) if
every submodule of M which contains T is T-essential in

every T-closed submodule of M which contains T is a
T-direct summand of M, see proposition (2.15).
In section three , we will define the following relation :
Let A and B be submodules of a module M with T < A
and T < B . We say that A a B if there exists a
submodule C such that A <1¢s C and B <t C.
Also we define the following relation : Let A and B be
submodules of a module M withT < Aand T < B . We
say that A B+ Bif AN B <1, Aand A N B < 1 B.
We prove that : The Bt is an equivalence relation , see
proposition (3.10).
2. The T-extending modules
In this section , we will introduce the concepts of the
T-direct sum and T-extending modules and we
illustrate it by some examples. We also give some basic
properties of these type of modules.
Definition (2.1): Let T, A and B be submodules of a
module M. M is called T-direct sum of A and B
(denotedby M= A @:B).IfM=A+Band ANB<T.
In this case , each of A and B is called a T-direct
summand of M .
Let M be a module . Clearly that every direct summand
of M is a T-direct summand. And when T = 0, a
submodule A of M is a T-direct summand of M if and
only if A is a direct summand of M.
Examples (2.2):
(1) Consider the module Z as Z-module and let T = 6Z .
Clearly that Z = 2Z @+ 3Z . But 2Z is not a direct
summand of Z . Now let T =47 .2Z N 3Z =6Z < 47 ,
then Z is not 4Z-direct sum of 2Z and 3Z.
(2) The Z;, as Z-module. Let T = {0,6},
show that A is {0,6}-direct summand of Zj, , and A is
not direct summand of Z;,.
Proposition (2.3): Let T, A and B be submodules of a
module M such that % = ?EB ? .ThenM = A &: B.

L éea%.ThenM=A+Band

Proof: suppose that

T T
%ﬂ%=A2B=OandhenceAﬂB=T.Thus
M=A®:B

Note: The converse of proposition is not true in general ,
for example . Consider the module Z as Z-module and
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D is a T-direct summand of M. Thus M is a T-extendin .
Remark (2.16): Let T be a submodule of M. If T =0
then M is T-extending if and only if M is extending.
Proof: Clear.

let T=A=4Z,B = 3Z. Cleary that M =A &1 B . But

ANB=12Z#T. Thus % is not the direct sum of % and
B

T

Remark (2.4): Let T, A and B be submodules of a
module M suchthat A<B<Mand T<B .IfAisa
T-direct summand of M , then A is a T-direct summand
of B.

Proof: Let A be a T-direct summand of M, then
M = A @+ C, for some submodule C of M. Since A<B,
then by modular law, B=M N B=(A @& C) N B =
A @+ (C N B). Thus Ais a T-direct summand of B.

A module M is called a distributive module if
ANB+C)=(ANB)+(ANC), for all submodules
A, Band Cof M. See [7].

Lemma (2.5): [8] Let A, B and C be are submodules of
a module M . Then the following statement are
equivalent :

(DAN(B+C)=(ANB)+(ANC).

2) A+ BNC)=A+B)NA+C).

Proposition (2.6): Let T, A and B be submodules of a

distributive module M such that M = A &1 B , then
M_ A+T @ B+T
T T T

Proof: Assume that M = A @ B .Then M = A+,B}+T =

At .Since ANB<T, then(AﬂB)+T<T

Slnce M |s a distributive module, the (A+T) N (B +T)
= (A N B + T < T, by lemma (2.5). But
T<(A+T)NB+T),therefore A+T)N(B+T)=T.

A+T B+T M A+T B+T
Hence — ﬂ——O Thus———EB

Proposmon (2. 7) LetT, A and B be submodules of a
module M such that A <B . If A is T-direct summand of
B and B is T-direct summand of M , then A is T-direct
summand of M.

Proof: Suppose that A is T-direct summand of B , then
B=A®:C , where C be asubmodule of B . Since B
is T-direct summand of M, then M = B @1 D , where D
be a submodule of M. Impliesthat M = (A& C) @1 D.
Hence M = A+ C) + D= A + (C + D) and
AN(C€ND =((ANCND < T. Then
M =A @1 (C @1 D). Thus A is T-direct summand of M.
Proposition (2.8): Let T, A and B be submodules of a
distributive module M such that M =A @1 B .ThenB + T
isa T-complement for A+ T in M.

Proof: Suppose that M is a distributive module and

M=A®:B. Thenby (26) == = @ =

= — @ ——. Thus
B + T is a T-complement for A+T |n M, by
[9,Coro.3.5,p. 907]
Corollary (2.9): Let T, A and B be submodules of a
distributive module M such that M = A @1 B . Then
A+ T is T-closed submodule of M.

M A+T @ H

Proof: Assume that M = AD+ B then— - —

by (2.6). Then 2 T is closed in ; by [1] . Thus A + T is

T-closed submodule of M, by [6 , Prop. 2.9 , p. 1684].
Corollary (2.10): Let T, A and B be submodules of
adistributive module M such that T <A and M =A@+ B
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a T-direct summand of M. we prove that : Let M be a
module. Then M is T-extending module if and only if.
Proof: Let M = A @+ B, then A is a T-closed in M , by

(2.9). Since T < A, then ? is closed submodule of% , by

[6, Coro. 2.10, p. 1684].

Proposition (2.11): Let T, A and B be submodules of a
distributive module M . If B is a T-complement for A in
M, then A @1 B <1,s M.

Proof: Let B be a T-complement for A in M, then
A N B < T. Let C be a submodule of M such that
(A @t B)NCC<T. Since M is a distributive module,
then (ANC) &t BN C) < Tand AN (B &7 C) =
(AN B)®r (AN C)<T. But B is maximal with respect
to property that A N B < T, therefore B + C = B. Implies
that C<B.Hence C=C N B <T .Thus A ®&1 B <1,cs M.
Corollary (2.12): Let T, A and B be submodules of a

distributive module M. If% is a relative complement for
% in %then A®rB <M.
Proof: Suppose that ? is a relative complement for % in

%, then B is a T-complement for A in M, by [9, Prop.
3.4,p.907]. Hence A @1 B <t M, by (2.11).
Proposition (2.13): Let A, B, C and D be submodules of
a distributive module M such that T, A, C < B . If
M =B @&+ D and C is a T-complement of A in B, then
C &1 Disa T-complement for A in M.

Proof: Let M =B @+ D and C be a T-complement for A

inB. ThenM=B+D,BND<Tand AN C<T. Since
C<B,thenCND<BND<T.AsA<B,thenAND<

B N D <T. But M is a distributive module, hence we
obtain AN (C &+ D)=(ANC)dr (AND)<T .Now
let L be a submodule of M such that C&t D < L and
ANLST.Then(LNA)NB=(ANL)NB<T.ButC
is maximal with respect to the property that A N C < T,
therefore, C=LNB.ThusL=MNL=(B®:D)NL
=(BNL)&r(DNL)=C & D. Which means C & D
is a T-complement for A in M.

We introduce the following definition

Definition (2.14): Let T be a submodule of a module M.
We say that M is T-extending module (denoted by T-CS
modules) if every submodule of M which contains T is
T-essential in a T-direct summand of M.

Proposition (2.15): Let M be a module. Then M is
T-extending module if and only if every T-closed
submodule of M which contains T is a T-direct summand
of M.

Proof: Suppose that M is a T-extending module and let
A be a T-closed submodule of M such that T < A . Since
M is a T-extending module , then there exist a T-direct
summand D of M such that A < 1, D . But A is a
T-closed submodule of M, therefore A + T = D .Thus
A=D.

Conversely, let A be a submodule of M such that T < A .
So there exist a T-closed submodule D in M such that
A <1¢ D, by [6, Prop. 2.12, P.1684]. By our assumption




way D is T-essential in Z,” then A and D are T-essential
in pr. Thus an ot me .

Proposition (2.17): Every T-direct summand contain T
of a distributive and T-extending module is T-extending
module.

Proof: Let M be a distributive and T-extending module
suchthat M= A @rBand T<A, where T, Aand B are
submodules of M. Let C be a T-closed submodule in A
such that T < C. Since A is a T-direct summand of M,
then A is a T-closed submodule of M, by (2.9). Thus C is
a T-closed in M, by [6, Th. 2.14 , p. 1684]. But M is a
T-extending , therefore C is a T-direct summand of M
by (2.15). Since C <A, then C is a T-direct summand of
A, by (2.4).

Examples (2.18):

(1) Consider the module Z; as Z-module and let
T ={0,2,4}. Then Z; and {0,2,4} are they only
submodules of Zg that containing T. Since {0,2,4} is a
T-essential and a T-direct summand of Zg and Zg is a
T-essential of Zg .Then Zg is T-extending module.

(2) Consider the module Z as Z-module . Let T = 2Z , then Z

and 2Z are they only submodules of Z that containing T . Since
2Z is T-essential in 2Z and 2Z is T-direct summand of Z .Then

Z is 2Z-extending module.

(3) The module M = Zg®Z, as a Z-module . It's known that M
is not extending module , by [10, ex. (2.4.18). Ch.2] . Hence M
is not {0}-extending module. Now let T = {0,2,4,6}®Z, .
Since M and T are the only submodules that containing T ,
then one can easily check that M is a T-extending module.

Proposition (2.19): Let T be a submodule of a module

M. If % is extending module, then M is a T-extending

module.The converse is true if M is a distributive
module.
Proof: Let A is a submodule of M such that T < A .

Since % is an extending module , then there exist a direct

summand % of % such that % <e % .Therefore A <1, B

by [5,Lem. 2.3, P. 17] and B is a T-direct summand of
M, by (2.3). Thus M is a T-extending .

For the converse , Let M be a distributive module % be a

submodule of % . Since M is T-extending and A is a
submodule of M , then there exist a T-direct summand B
of M such that A <1 B. Thus = <, = , by [5, Lem. 2.3,
p. 17]. Hence M = B &+ B; , for some submodule B, of

M But M is a distributive module , therefore
% = ? &) B1T+T , by proposition (2.6). So ? is a direct

summand of % . Thus % is extending.

Theorem (2.20): Let T and A be submodules of a
T-extending module M such that T < A. If the
intersection of A with any T-direct summand of M
containing T is a T-direct summand of A then A is
T-extending module.

Proof: Let M be a T-extending module and N be a
submodule of A such that T <N, then there exist T-direct
summand D of M such that T <D and N <, D . Since
N <AND,then N < AN D, by [5, Prop. 212 , P.
19]. By our A N D is a T-direct summand of A . Thus A
is T-extending module .
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Then % is a closed submodule of

K of M which containing T and either K N A <
K N B <Tisa T-direct summand of M.
Proof: Assume K is T-closed of M such that T < K and

T = K N A. Since M is T-extending module , then K is a
T-direct summand of M by, (2.15) .

Theorem (2.22): Let T, A and B be submodules of a
module M suchthat M =A@t Band T<ANB.If
every T-closed submodule K of M which containing T
and either K N A < T or KN B < T is a T-direct
summand of M, then every T-complement containing T
for A or B in M is T-direct summand of M and
T-extending module .

Proof: Let K be a T-complement for A in M such that
T< K. Then K is a T-closed submodule in M . by [6. Th.
2.18 , P. 1684]. But K N A < T , therefore by our a
assumption K isa T-direct summand of M.

Let L be a T-closed submodule of K such that T < L .
Then L is a T-closed in M , by [6. Th.2.14 , p. 1684].
Since LN A <K N A <T. Then by our assumption L is
a T-direct summand of M and hence L is a T-direct
summand of K, by (2.4) . Thus K is a T-extending of M.
Theorem (2.23): Let T, A and B be submodules of a
module M suchthat M=A@®tBand T<ANB.IfMis
T-extending module, then every T-complement
containing T for A or B in M is T-direct summand of M
and T-extending module .

Proof: Suppose that M is T-extending module and let K
is a T-complement for A in M contain T , then K is
T-closed in M, by [ 6. Th. 2.18 , P. 1684]. Since
KNA<T,then Kisa T-direct summand of M, by
(2.21). Thus K is T-extending module , by (2.22).

M
T
T or

3- The relations a1 and fr:
In this section we define the relations a1 and St . Also
we give some basic properties of these relations.
Definition (3.1): Let T be a submodule of a module M
and let St be the set of submodules of M that containing
T.Let Aand B € St . We say A at B if there exists a
submodule C such that A <1, C and B <1, C .

Let M be a module and T = 0. Then one can easily show
that A a B if and only if A ar B, for each submodules A
and B of M.

Examples (3.2):

(1) The module Z, as Z-module. Let T ={0, 2},
A ={0, 2} and B = Z, . Since A and B are T-essential in
Z4, then A o B.

(2) The module Z;, as Z-module .

Let T = {0,6},

in Z,, and clearly that A N {0,3,69} = T. But
{0,3,6,9} « T, therefore A is not T-essential in Zy, .
Thus A is not relate to B by ar

(3) The module Zy* as Z-module. Let T = (pin +27), A=

(Pim+Z) and D = (%+ Z), wheren,m,reZandm, r>n
.Let B be a submodule of Zp* such that AN B<T.

Since Zp” is a uniserial module , then either A <B or B <
A . IfA<B,weget ANB=A<T which is a
contradiction . Thus B < A and hence AN B=B<T.
Thus A is T-essential submodule of Z,”. By the same



A NCSTimplies BN C<Tand BN D < T implies
A ND<T, for each submodules C and D of M.
Proposition (3.3): Let T be a submodule of a module M.

Then A ar B if and only if 2 (x , foreach Aand B € Sy.

Proof: Let A oy B . Then there exists a submodule C of

M such that A < 1, C and B < 1o C. Then é<e% and
2<.t by [5.Lem. 23,P. 17]. Thus 2l

Conversely , Iet - a ; , then there eX|stsa5ubmoduIe—

of ?SUChthat ;SQEand ;Ee?ThenASTesCandB

<1¢C,by[5 Lem.2.3,P.17]. Thus Aot B .
Remark(3.4): The ar is a reflexive and symmetric
relation.
Proof: Clear.
Proposition (3.5): Let T be a submodule of a module M.
Then M is T-extending if and only if for each submodule
A € Sy, there exists a T-direct summand D € St such
that A (XTD
Proof: =) Suppose that M is T-extending , and let
A € Sy . Since M is T-extending , then there exists a
T-direct summand D € Sy such that A < 1, D, we want
to show that there exists a submodule B of M such that
A<tisBand D <y, B.LetB=D, then A<y, D and
DSTes D .ThUSA(XTD.
&) Let A € Sy, by our assumption , there exists a
T-direct summand D € St such that A ar D. Thus there
exists a submodule B € St such that A < 1,x B and
D < 15 B. It is enough to show that B is a T-direct
summand of M . Let M =D @&y D; , where Dy is a
submodule of M . Since D < B then M =B + D; . Since
DND, <T,then BND)ND;<T.ButD < 1B,
therefore D; N B < T . Hence M = B @+ D, . Claim that
B=D.Toshowthat, Let be B,thenb =d +d;,
wheredeDandd, €eD;. Sob-d=d;e(BND)<T<
D .Henceb = d +d; € D. This implies that B =D . Thus
M is a T-extending module .
Proposition (3.6): Let T, A and B be submodules of
a module M such that A and B € Sy .If A ar B, then
there exists a submodule C of M such that % and % are
singular .
Proof: Assume that A ar B, then there exists a
submodule CeSy such that A<t Cand B <1, C.
Hence - _e—and —_e— by [5, Lem. 2.3, P. 17]. Now
con5|der the followmg two short exact sequences:

Al ¢ A

00— =>
T T

T T B/T
Where i, j are inclusion map and 7r1, 2] are the natural

epimorphisms. Since és S oand 2<, & then &L
T T A/T
C/T

T— e

B/T are singular , by [2, Prop 1.20, P.31] . By the
third |somorph|s theorem , L= = £ /T
A/T A B/T

and
=& Thus
B

X and E are singular.
Definition (3.7): Let T be a submodule of a module M

and let A and B € Sy, then we say that A B+ B if
ANB<tsAand ANB<sB.
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Theorem (2.21): Let T, A and B be submodules of a
module M suchthat M=A@rBand T<ANB.IfMis
T-extending module , if every T-closed submodule

Examples (3.8):
(1) The module Z, as Z-module . Let T = {0} A =
{0,2} and B = Z, , then A N B = A < 1, A and
ANB :ASTES B . Thus {6,2}ﬁTZ4 .
(2) Consider the module Zp, as Z-module . Let
T= (Pin+Z),A:(Pim+Z)andwheren,meZand
m > n and let B = Zx". Since by (3.2-3), A < 1. Zp~. and
A<t1eA.Then Z," Br Zp™.
(3) The module Z;, as Z-module. Let T = {0,6},
A= {62‘16@10}3]‘](18 Zip,then ANB= A<T95A
. But A is not T-essential in Z;, by (3.2-2). Therefore
{6 2,4,6,8,10} is not related to Z, by Br.
Properties (3.9): Let T, A and B be a submodules of a
module M such that A, B € St. Then A 81 B if and only

. A B

Proof: =) Suppose that A g B, then A N B <, A and
AN B <reB. Then 227 < e% and “2° <, 2 by [5,
Lem. 2.3, p. 17]. Thus —ﬁ T

<) Let%ﬁ— then AnB % and AQBSG% Then
AﬂBSTesAandAﬂBSTesB,by[S,Lem.ZS P.17].

Thus A5+ B
Proposition (3.10): The B+ is an equivalence relation.
Proof: Clearly that gt is reflexive and symmetric . We

,let A, B and C € Sy such
that A B+ Band B 57 C. Since A 8+ B and B 81 C, then
ANB<1sA,ANB<1sB,BNC<qsBand
BN C <1 C. LetL beasubmodule of A such that
(ANC)NL<T,then BNC)N(ANBNL)<T.
Since BN C<1sB,then ANBNLS<T. Hence
(ANB)N(ANL)<T.But AN B <1, A, therefore
ANL<T.Since L<A,thenL<T.SoANC<1A

want to show S is transitive

Similarly A N C < 1, C. Thus Bt is an equivalence
relation.

Proposition (3.11):Let T, A and B be submodules of a module
M such that A and B € Sy .Then A S B if and only if

Proof:=) Suppose that A g+ B and let C be a submodule of M
such that AN C < T . Then ANBNC<T,
(ANB)YNBNC)<T But AN B <gs B ,therefore
B N C<T.Nowlet BN D<T ,where D is a submodule of M .
Then ANBNDS<Tand hence ( ANB)YN(AND)<T.
ButA N B <ges A, therefore AND<T.

<) To show A B+ B . Let L be a submodule of A such that
ANBNLS<T Since AN (B NL)<T, then by our
assumption BN L= BN (BNL)<T. Hence ANL<T. But
L <A, therefore L <T . Similarly, let K be a Submodule of B
such that (A N B) N K < T . Then by our assumption A N K

hence



=AN(ANK)<T.Hence BNK<T.ButK<B, therefore
K <T. Thus A 51 B.

Proposition (3.12): Let T, A and B be submodules of a
module M such that A and B € Sy. Then A B; B if and
only if foreach x € A - T,y € B - T there exists

r,ri€ RsuchthatrxeB-Tandriye A-T.

Proof: Assume that A Bt B, then ANB < 1, A and
ANB <14 B. Hence for each x € A - T there exists r € R
such that rx e (AN B)-T.Thusrx € B-T . Similarly,
for each y € B - T there exists r; € R such that
rnye(ANB)-Tandhenceriye A-T.

For the converse, assume that x € A - T. Then there
exists r e Rsuchthatrx e B-T.Sorxe (ANB)-T.
Thus AN B <1, A. Now lety € B - T, then there exists
r € Rsuchthatriy eA-T.Hencerrye (ANB)-T.
So A N B <1, B. Thus A g1 B.

Proposition (3.13): Let T , A;, A, , By and B, be
submodules of a module M such that A; ,A,, B;and B,

€ St . If Ay B+ By and A, Br B, , then
(A1N Ay 7 (B1 N By) .
Proof: Suppose that A; S+ B, and A, B+ B, . Then

A N By <tes A1, A1 N B <7esB1, AN By <7es Az and
A; N By <1es By . Hence (A; N Ay) N (B1 N By) <1es Ar
N A, and (A; N Ay N (B N By) <1e By N By, by
[9, Prop.2.6 . P.903]. Hence (AN Ayp) B (B1N By).
Proposition (3.14): Letf : M — N be an epimorphism
and T, A, B be submodules of N such that A and
BeSr. IFABrB, then f(A) B¢y f(B).
Proof: Let A and B be submodules of N such that
ABrB,then ANB<sAand AN B <t B.Hence by
[5, Lem. 2.15,P. 20], fX(ANB)<{ e f 1 (A),
implies that f " (A) N f1 (B)<¢ " e f (A) . Since
A N B < 1 B, then by [5, Lem. 2.15, P. 20],
f (A NB) <t mef 7 (B), implies that
f A NTHB) <t “mes T (B). Thus f ™ (A) B 7 (B).
Proposition (3.15): Let T, A and B be submodules of a
module M such that Aand B € St . If A 81 B, then ﬁ

B .
and —— are singular.
ANB

Proof: Assume that A S+ B . Then A N B < 1,5 A and
ANnB A AnB B

A NB <1, B . Then T SeT and T §e¥,by
[5, Lem. 2.3, P. 17].
Now consider the following two short exact sequences:

AnB [ A ™ A/T

0— > 2353 2" )
T T (AnB)/T
ANB J B T2 B/T

0— - = / —0

T - (ANB)/T
where i, j are inclusion map and m, , , are the natural

epimorphisms . Since %5 ] % and 208 < % . then
A/T B/T .
AnB) /T AnB)T are singular , by [2, Prop.1.20,

P.31] . Hence by the third isomorphism theorem,
A/T A B/T A Thus A—‘:B and

(AnB)/TEAnB (AnB)/TEAnB'
ﬁ are singular.
Corollary (3.16): Let T , A and B be submodules of a

module M such that A and B € Sr. If A 1 B, then 222

A
A+B .
and ——are singular.
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Proof: Clear by the second isomorphism theorem.
Proposition (3.17): Let {M .}, e, be a family of modules
and T,, A, and B, be submodules of M ., for each
a€asuchthat T, <A, NB,.IfA, Br.B,, foreach a €
A, then (@ aEAAﬂ)ﬁ®ﬂEATﬂ (@(XEA Brx) .

Proof Let A, Br, B, for each a € a ,then
Ay N By < (tayes Ay and A, N By < (1g)es By . HeNce by
[5, Lem. 2.3, P. 17] . 2408 < A% gpg AcnBe o Be

AT()](3 — ¢ Tq ATa =€ g "
o N Ba o

Then by [1]l @a €A S e @a € A and @a €
Aa N Ba

Ta Ta A B
a N Ba
AT <. @a N — But

o Ta @a €A Ta
@o € A(Aa N Ba) Aa Do €A Aa

Ba
: — = and — =
@a € AT a eaEA Ta @a € ATa @aEA

Ta
Do€rB Do €r(AanB Do €r A
acaBe therefore SiEAAenBy o Bu&An g
Do €aTa Do €ATa Do € ATa

Besflento . 212 Then by 5, Lom. 23, P. 17,

Doer (AN By) < (@aentaes Paer Aqand hence B, e,
(Ac N By < @« e Taes Da € » By . Hence
(6(1 €A Aa) N (6(1 €A Ba) < (Pa € A Ta)es @u €A Au and
(®u €A Aa) N (ea €A Bu) < (Do € A Ta)es ®a €A Ba . Thus
(®(IEA Aa) ,BEBaEATa (®(1€A BU’)'
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