On T-extending modules

¹Bahar H. Al-Bahrani and ²Entisar A. Al-Dhahari 1University of Baghdad, College of Science 2 College of Science, University of Baghdad ¹albahranibahar@yahoo.com,²eahmed.math@gmail.com

Abstract

In this paper we introduce the concepts of the T-direct sum and T-extending modules and we give some basic properties of these types of modules. Also we define the relations α_T and β_T on the set of submodules containing T of a module M and we give some basic properties.

Keywords: extending modules, T-essential module, T-closed modules

1-Introduction

In this paper, all rings are associative with identity and all modules are unitary left R-modules. Recall that a submodule A of an R-module M is essential submodule of M{denoted by $A \leq {}_e M$ }, if for every $B \leq M$, $A \cap B=0$ implies that B=0.

A submodule B of a module M is called complement for a submodule A of M if it is maximal with respect to the property that $A \cap B = 0$. More details about essential submodules and complement can be found in [1].

A module M is an **extending module** (denoted by CS- module), if every submodule of M is essential in a direct summand of M, see [2, 3].

Let M be a module. Recall the following relation on the set of submodules of M : A α B if there exists a submodule C of M such that $A \leq_e C$ and $B \leq_e C$, see [4]. Let M be a module. Recall the following relation on the set of submodules of M: A β B if A \cap B \leq_{e} A and $A \cap B \leq_{e} B$, see [4]. In [5], the authors introduced the definition of T-essential (complement) submodules as follows: Let $T \lneq M$, a submodule A of M is called T-essential submodule of M {denoted by $A \leq _{Tes} M$ }, provided that $A \leq T$ and for each submodule B of M , $A \cap B \leq T$ implies that $B \leq T$. A submodule B of M is called a T –complement for a submodule A in M if B is maximal with respect to the property that $A \cap B \leq T$. In [6], we introduce the definition of T-closed submodules as follows: Let T, A and B be submodules of a module M. A is called a T-closed submodule of M (denoted by $A \leq_{Tc} M$), if $A \leq_{Tes} B$ implies that A + T = B, for every submodule B of M.

In section 2 , we will introduce the definition of T-direct sum modules as follows : Let T, A and B be submodules of a module M. M is called T-direct sum of A and B (denoted by $M = A \oplus_T B$). If M = A + B and $A \cap B \leq T$. In this case, each of A and B is called a T-direct summand of M .We prove that Let T, A and B be submodules of a distributive module M. If B is a T-complement for A in M , then $A \oplus_T B \leq_{Tes} M$, see proposition (2.11). Also we introduce the definition of T-extending modules as follows:

Let T be a submodule of a module M. We say that M is **T-extending module** (denoted by T-CS modules) if every submodule of M which contains T is T-essential in every T-closed submodule of M which contains T is a T-direct summand of M, see proposition (2.15).

In section three , we will define the following relation : Let A and B be submodules of a module M with $T \le A$ and $T \le B$. We say that $A \alpha_T B$ if there exists a submodule C such that $A \le_{Tes} C$ and $B \le_{Tes} C$.

Also we define the following relation : Let A and B be submodules of a module M with $T \le A$ and $T \le B$. We say that $A \beta_T B$ if $A \cap B \le _{Tes} A$ and $A \cap B \le _{Tes} B$. We prove that : The β_T is an equivalence relation , see proposition (3.10).

2. The T-extending modules

In this section, we will introduce the concepts of the **T-direct sum** and **T-extending modules** and we illustrate it by some examples. We also give some basic properties of these type of modules.

Definition (2.1): Let T, A and B be submodules of a module M. M is called **T-direct sum** of A and B (denoted by $M = A \bigoplus_T B$). If M = A + B and $A \cap B \le T$. In this case, each of A and B is called a T-direct summand of M.

Let M be a module . Clearly that every direct summand of M is a T-direct summand. And when T = 0, a submodule A of M is a T-direct summand of M if and only if A is a direct summand of M.

Examples (2.2):

(1) Consider the module Z as Z-module and let T = 6Z. Clearly that $Z = 2Z \bigoplus_T 3Z$. But 2Z is not a direct summand of Z. Now let $T = 4Z \cdot 2Z \cap 3Z = 6Z \leq 4Z$, then Z is not 4Z-direct sum of 2Z and 3Z.

(2) The Z_{12} as Z-module. Let $T = \{\overline{0},\overline{6}\}$, $A = \{\overline{0},\overline{2},\overline{4}, \overline{6},\overline{8},\overline{10}\}$ and $B = \{\overline{0},\overline{3},\overline{6},\overline{9}\}$. One can easily show that A is $\{\overline{0},\overline{6}\}$ -direct summand of Z_{12} , and A is not direct summand of Z_{12} .

Proposition (2.3): Let T, A and B be submodules of a module M such that $\frac{M}{T} = \frac{A}{T} \bigoplus \frac{B}{T}$. Then $M = A \bigoplus_{T} B$. **Proof:** suppose that $\frac{M}{T} = \frac{A}{T} \bigoplus \frac{B}{T}$. Then M = A + B and

<u>Proof:</u> suppose that $\frac{M}{T} = \frac{A}{T} \bigoplus \frac{B}{T}$. Then M = A + B and $\frac{A}{T} \cap \frac{B}{T} = \frac{A \cap B}{T} = 0$ and hence $A \cap B = T$. Thus $M = A \bigoplus_{T} B$

<u>Note:</u> The converse of proposition is not true in general, for example. Consider the module Z as Z-module and

D is a T-direct summand of M. Thus M is a T-extendin . **<u>Remark (2.16)</u>**: Let T be a submodule of M. If T = 0then M is T-extending if and only if M is extending. **<u>Proof:</u>** Clear.

let T = A = 4Z, B = 3Z. Cleary that $M = A \bigoplus_T B$. But $A \cap B = 12Z \neq T$. Thus $\frac{M}{T}$ is not the direct sum of $\frac{A}{T}$ and $\frac{B}{T}$.

<u>Remark</u> (2.4): Let T , A and B be submodules of a module M such that $A \le B \le M$ and $T \le B$. If A is a T-direct summand of M , then A is a T-direct summand of B.

Proof: Let A be a T-direct summand of M, then $M = A \bigoplus_T C$, for some submodule C of M. Since $A \leq B$, then by modular law, $B = M \cap B = (A \bigoplus_T C) \cap B = A \bigoplus_T (C \cap B)$. Thus A is a T-direct summand of B.

A module M is called a **distributive module** if $A \cap (B + C) = (A \cap B) + (A \cap C)$, for all submodules A, B and C of M. See [7].

Lemma (2.5): [8] Let A , B and C be are submodules of a module M . Then the following statement are equivalent :

(1) $A \cap (B + C) = (A \cap B) + (A \cap C)$.

(2) $A + (B \cap C) = (A + B) \cap (A + C).$

Proposition (2.6): Let T, A and B be submodules of a distributive module M such that $M = A \bigoplus_T B$, then $\frac{M}{T} = \frac{A+T}{T} \bigoplus \frac{B+T}{T}$. **Proof:** Assume that $M = A \bigoplus_T B$. Then $\frac{M}{T} = \frac{A+B+T}{T} =$

Proof: Assume that $M = A \bigoplus_{T} B$. Then $\frac{M}{T} = \frac{A+B+T}{T} = \frac{A+T}{T} + \frac{B+T}{T}$. Since $A \cap B \le T$, then $(A \cap B) + T \le T$. Since M is a distributive module, the $(A + T) \cap (B + T) = (A \cap B) + T \le T$, by lemma (2.5). But $T \le (A+T) \cap (B+T)$, therefore $(A+T) \cap (B+T) = T$. Hence $\frac{A+T}{T} \cap \frac{B+T}{T} = 0$. Thus $\frac{M}{T} = \frac{A+T}{T} \bigoplus_{T} \frac{B+T}{T}$.

Proposition (2.7): Let T , A and B be submodules of a module M such that $A \le B$. If A is T-direct summand of B and B is T-direct summand of M , then A is T-direct summand of M.

Proof: Suppose that A is T-direct summand of B , then B = A $\bigoplus_T C$, where C be a submodule of B . Since B is T-direct summand of M, then M = B $\bigoplus_T D$, where D be a submodule of M. Implies that M = (A $\bigoplus_T C) \bigoplus_T D$. Hence M = (A + C) + D = A + (C + D) and A \cap (C \cap D) = (A \cap C) \cap D \leq T. Then M = A $\bigoplus_T (C \bigoplus_T D)$. Thus A is T-direct summand of M. **Proposition (2.8):** Let T, A and B be submodules of a distributive module M such that M = A $\bigoplus_T B$. Then B + T is a T-complement for A + T in M.

Proof: Suppose that M is a distributive module and $M = A \bigoplus_T B$. Then by (2.6), $\frac{M}{T} = \frac{A+T}{T} \bigoplus \frac{B+T}{T}$. Thus B + T is a T-complement for A+T in M, by [9,Coro.3.5,p. 907]

<u>Corollary</u> (2.9): Let T, A and B be submodules of a distributive module M such that $M = A \bigoplus_T B$. Then A + T is T-closed submodule of M.

Proof: Assume that $M = A \bigoplus_T B$, then $\frac{M}{T} = \frac{A+T}{T} \bigoplus \frac{B+T}{T}$, by (2.6). Then $\frac{A+T}{T}$ is closed in $\frac{M}{T}$ by [1]. Thus A + T is T-closed submodule of M, by [6, Prop. 2.9, p. 1684]. **Corollary (2.10):** Let T, A and B be submodules of adistributive module M such that $T \le A$ and $M = A \bigoplus_T B$.

a T-direct summand of M. we prove that : Let M be a module. Then M is T-extending module if and only if.

Proof: Let $M = A \bigoplus_T B$, then A is a T-closed in M, by (2.9). Since $T \le A$, then $\frac{A}{T}$ is closed submodule of $\frac{M}{T}$, by [6, Coro. 2.10, p. 1684].

Proposition (2.11): Let T , A and B be submodules of a distributive module M . If B is a T-complement for A in M , then $A \bigoplus_T B \leq_{Tes} M$.

Proof: Let B be a T-complement for A in M, then $A \cap B \leq T$. Let C be a submodule of M such that $(A \oplus_T B) \cap C \leq T$. Since M is a distributive module, then $(A \cap C) \oplus_T (B \cap C) \leq T$ and $A \cap (B \oplus_T C) = (A \cap B) \oplus_T (A \cap C) \leq T$. But B is maximal with respect to property that $A \cap B \leq T$, therefore B + C = B. Implies that $C \leq B$. Hence $C = C \cap B \leq T$. Thus $A \oplus_T B \leq_{Tes} M$.

<u>Corollary (2.12)</u>: Let T, A and B be submodules of a distributive module M. If $\frac{B}{T}$ is a relative complement for A. M. d. D. D. C. M.

 $\frac{A}{T}$ in $\frac{M}{T}$ then $A \bigoplus_{T} B \leq_{Tes} M$.

<u>Proof:</u> Suppose that $\frac{B}{T}$ is a relative complement for $\frac{A}{T}$ in $\frac{M}{T}$, then B is a T-complement for A in M, by [9, Prop.

3.4, p. 907]. Hence $A \bigoplus_{T} B \leq_{Tes} M$, by (2.11).

<u>Proposition (2.13)</u>: Let A, B, C and D be submodules of a distributive module M such that T, A, $C \leq B$. If $M = B \bigoplus_T D$ and C is a T-complement of A in B, then $C \bigoplus_T D$ is a T-complement for A in M.

Proof: Let $M = B \bigoplus_T D$ and C be a T-complement for A in B. Then M = B + D, $B \cap D \le T$ and $A \cap C \le T$. Since $C \le B$, then $C \cap D \le B \cap D \le T$. As $A \le B$, then $A \cap D \le$ $B \cap D \le T$. But M is a distributive module, hence we obtain $A \cap (C \bigoplus_T D) = (A \cap C) \bigoplus_T (A \cap D) \le T$. Now let L be a submodule of M such that $C \bigoplus_T D \le L$ and $A \cap L \le T$. Then $(L \cap A) \cap B = (A \cap L) \cap B \le T$. But C is maximal with respect to the property that $A \cap C \le T$, therefore, $C = L \cap B$. Thus $L = M \cap L = (B \bigoplus_T D) \cap L$ $= (B \cap L) \bigoplus_T (D \cap L) = C \bigoplus_T D$. Which means $C \bigoplus_T D$ is a T-complement for A in M.

We introduce the following definition

Definition (2.14): Let T be a submodule of a module M. We say that M is **T-extending module** (denoted by T-CS modules) if every submodule of M which contains T is T-essential in a T-direct summand of M.

Proposition (2.15): Let M be a module. Then M is T-extending module if and only if every T-closed submodule of M which contains T is a T-direct summand of M.

Proof: Suppose that M is a T-extending module and let A be a T-closed submodule of M such that $T \le A$. Since M is a T-extending module , then there exist a T-direct summand D of M such that $A \le _{Tes} D$. But A is a T-closed submodule of M , therefore A + T = D. Thus A = D.

Conversely, let A be a submodule of M such that $T \le A$. So there exist a T-closed submodule D in M such that $A \le _{Tes}$ D, by [6, Prop. 2.12, P.1684]. By our assumption way D is T-essential in Z_P^{∞} then A and D are T-essential in Z_P^{∞} . Thus $Z_p^n \alpha_T Z_p^m$.

Proposition (2.17): Every T-direct summand contain T of a distributive and T-extending module is T-extending module.

Proof: Let M be a distributive and T-extending module such that $M = A \bigoplus_T B$ and $T \le A$, where T, A and B are submodules of M. Let C be a T-closed submodule in A such that $T \le C$. Since A is a T-direct summand of M, then A is a T-closed submodule of M, by (2.9). Thus C is a T-closed in M, by [6, Th. 2.14, p. 1684]. But M is a T-extending, therefore C is a T-direct summand of M by (2.15). Since $C \le A$, then C is a T-direct summand of A, by (2.4).

Examples (2.18):

(1) Consider the module Z_6 as Z-module and let $T = \{\overline{0}, \overline{2}, \overline{4}\}$. Then Z_6 and $\{\overline{0}, \overline{2}, \overline{4}\}$ are they only submodules of Z_6 that containing T. Since $\{\overline{0}, \overline{2}, \overline{4}\}$ is a T-essential and a T-direct summand of Z_6 and Z_6 is a T-essential of Z_6 . Then Z_6 is T-extending module.

(2) Consider the module Z as Z-module . Let T=2Z , then Z

and 2Z are they only submodules of Z that containing T . Since

2Z is T-essential in 2Z and 2Z is T-direct summand of Z .Then

Z is 2Z-extending module.

(3) The module $M=Z_8\oplus Z_2$ as a Z-module . It's known that M is not extending module , by [10, ex. (2.4.18). Ch.2] . Hence M is not {0}-extending module. Now let $T=\{\overline{0},\overline{2},\overline{4},\overline{6}\}\oplus Z_2$. Since M and T are the only submodules that containing T , then one can easily check that M is a T-extending module.

Proposition (2.19): Let T be a submodule of a module M. If $\frac{M}{T}$ is extending module, then M is a T-extending module. The converse is true if M is a distributive module.

Proof: Let A is a submodule of M such that $T \le A$. Since $\frac{M}{T}$ is an extending module , then there exist a direct summand $\frac{B}{T}$ of $\frac{M}{T}$ such that $\frac{A}{T} \le {}_{e} \frac{B}{T}$. Therefore $A \le {}_{Tes} B$ by [5,Lem. 2.3, P. 17] and B is a T-direct summand of M, by (2.3). Thus M is a T-extending .

For the converse, Let M be a distributive module $\frac{A}{T}$ be a submodule of $\frac{M}{T}$. Since M is T-extending and A is a submodule of M, then there exist a T-direct summand B of M such that $A \leq_{Tes} B$. Thus $\frac{A}{T} \leq_{e} \frac{B}{T}$, by [5, Lem. 2.3, p. 17]. Hence M = B $\bigoplus_{T} B_1$, for some submodule B_1 of M. But M is a distributive module , therefore $\frac{M}{T} = \frac{B}{T} \bigoplus \frac{B1+T}{T}$, by proposition (2.6). So $\frac{B}{T}$ is a direct summand of $\frac{M}{T}$. Thus $\frac{M}{T}$ is extending.

<u>Theorem (2.20)</u>: Let T and A be submodules of a T-extending module M such that $T \leq A$. If the intersection of A with any T-direct summand of M containing T is a T-direct summand of A then A is T-extending module.

Proof: Let M be a T-extending module and N be a submodule of A such that $T \le N$, then there exist T-direct summand D of M such that $T \le D$ and $N \le_{Tes} D$. Since $N \le A \cap D$, then $N \le_{Tes} A \cap D$, by [5, Prop. 2.12, P. 19]. By our $A \cap D$ is a T-direct summand of A. Thus A is T-extending module.

Proof: Assume K is T-closed of M such that $T \le K$ and $T = K \cap A$. Since M is T-extending module , then K is a

T-direct summand of M by , $\left(2.15\right)$.

Theorem (2.22): Let T , A and B be submodules of a module M such that $M = A \bigoplus_T B$ and $T \le A \cap B$. If every T-closed submodule K of M which containing T and either $K \cap A \le T$ or $K \cap B \le T$ is a T-direct summand of M, then every T-complement containing T for A or B in M is T-direct summand of M and T-extending module .

<u>Proof:</u> Let K be a T-complement for A in M such that $T \le K$. Then K is a T-closed submodule in M . by [6. Th. 2.18, P. 1684]. But $K \cap A \le T$, therefore by our a assumption K is a T-direct summand of M.

Let L be a T-closed submodule of K such that $T \le L$. Then L is a T-closed in M, by [6. Th.2.14, p. 1684]. Since $L \cap A \le K \cap A \le T$. Then by our assumption L is a T-direct summand of M and hence L is a T-direct summand of K, by (2.4). Thus K is a T-extending of M. **Theorem (2.23):** Let T, A and B be submodules of a module M such that $M = A \bigoplus_T B$ and $T \le A \cap B$. If M is T-extending module, then every T-complement containing T for A or B in M is T-direct summand of M and T-extending module.

Proof: Suppose that M is T-extending module and let K is a T-complement for A in M contain T , then K is T-closed in M, by [6. Th. 2.18 , P. 1684]. Since $K \cap A \leq T$, then K is a T-direct summand of M, by (2.21). Thus K is T-extending module , by (2.22).

3- The relations $\alpha_{\rm T}$ and $\beta_{\rm T}$:

In this section we define the relations $\alpha_{\rm T}$ and $\beta_{\rm T}$. Also we give some basic properties of these relations.

Definition (3.1): Let T be a submodule of a module M and let S_T be the set of submodules of M that containing T. Let A and $B \in S_T$. We say A $a_T B$ if there exists a submodule C such that $A \leq_{Tes} C$ and $B \leq_{Tes} C$.

Let M be a module and T = 0. Then one can easily show that A α B if and only if A α_T B, for each submodules A and B of M.

Examples (3.2):

(1) The module Z_4 as Z-module. Let $T = \{\overline{0}, \overline{2}\}$, $A = \{\overline{0}, \overline{2}\}$ and $B = Z_4$. Since A and B are T-essential in Z_4 , then A $\alpha_T B$.

(2) The module Z_{12} as Z-module . Let $T = \{\overline{0},\overline{6}\}$, $A = \{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}$ and $B = Z_{12}$. Since B is T-essential in Z_{12} and clearly that $A \cap \{\overline{0},\overline{3},\overline{6},9\} = T$. But $\{\overline{0},\overline{3},\overline{6},9\} \leq T$, therefore A is not T-essential in Z_{12} . Thus A is not relate to B by α_T

(3) The module Z_{P}^{∞} as Z-module. Let $T = (\frac{1}{pn} + Z)$, $A = (\frac{1}{pm} + Z)$ and $D = (\frac{1}{pr} + Z)$, where n, m, $r \in Z$ and m, r > n. Let B be a submodule of Z_{P}^{∞} such that $A \cap B \leq T$.

Since Z_{P}^{∞} is a uniserial module of Z_{P} bath and $H + B \subseteq H$. A. If $A \leq B$, we get $A \cap B = A \leq T$ which is a contradiction. Thus $B \leq A$ and hence $A \cap B = B \leq T$. Thus A is T-essential submodule of Z_{P}^{∞} . By the same A \cap C \leq T implies B \cap C \leq T and B \cap D \leq T implies $A \cap D \leq T$, for each submodules C and D of M.

Proposition (3.3): Let T be a submodule of a module M.

Then A α_T B if and only if $\frac{A}{T} \alpha \frac{B}{T}$, for each A and B \in S_T.

Proof: Let A α_T B. Then there exists a submodule C of M such that $A \leq_{Tes} C$ and $B \leq_{Tes} C$. Then $\frac{A}{T} \leq_{e} \frac{C}{T}$ and $\frac{B}{T} \leq e \frac{C}{T}$, by [5,Lem. 2.3, P. 17].. Thus $\frac{A}{T} \alpha \frac{B}{T}$.

Conversely, let $\frac{A}{T} \alpha \frac{B}{T}$, then there exists a submodule $\frac{C}{T}$ of $\frac{M}{T}$ such that $\frac{A}{T} \leq_{e} \frac{C}{T}$ and $\frac{B}{T} \leq_{e} \frac{C}{T}$. Then $A \leq_{Tes} C$ and $B \leq_{Tes} C$, by [5, Lem. 2.3, P. 17]. Thus $A \alpha_{T} B$.

<u>Remark(3.4)</u>: The α_T is a reflexive and symmetric relation.

Proof: Clear.

Proposition (3.5): Let T be a submodule of a module M. Then M is T-extending if and only if for each submodule $A \in S_T$, there exists a T-direct summand $D \in S_T$ such that A $\alpha_T D$

<u>Proof:</u> \Rightarrow) Suppose that M is T-extending , and let $A \in S_T$. Since M is T-extending , then there exists a T-direct summand $D \in S_T$ such that $A \leq_{Tes} D$, we want to show that there exists a submodule B of M such that $A \leq_{\text{Tes}} B \text{ and } D \leq_{\text{Tes}} B.$ Let B = D , then $\ A \leq_{\text{Tes}} D$ and $D \leq_{Tes} D$. Thus A $\alpha_T D$.

 \Leftarrow) Let A \in S_T, by our assumption, there exists a T-direct summand $D \in S_T$ such that A $\alpha_T D$. Thus there exists a submodule $B \in S_T$ such that $A \leq {}_{Tes} B$ and $D \leq$ $_{Tes}$ B. It is enough to show that B is a T-direct summand of M. Let $M = D \bigoplus_T D_1$, where D_1 is a submodule of M . Since $D \le B$ then $M = B + D_1$. Since $D \cap D_1 \leq T$, then $(B \cap D) \cap D_1 \leq T$. But $D \leq_{Tes} B$, therefore $D_1 \cap B \leq T$. Hence $M = B \bigoplus_T D_1$. Claim that B = D. To show that , Let $b \in B$, then $b = d + d_1$, where $d \in D$ and $d_1 \in D_1$. So $b - d = d_1 \in (B \cap D_1) \le T \le$ D.Hence $b = d + d_1 \in D$. This implies that B = D. Thus M is a T-extending module.

Proposition (3.6): Let T, A and B be submodules of a module M such that A and $B \in S_T$. If A $\alpha_T B$, then there exists a submodule C of M such that $\frac{C}{A}$ and $\frac{C}{B}$ are singular.

<u>Proof:</u> Assume that A α_T B, then there exists a submodule $C \in S_T$ such that $\ A \leq_{Tes} C$ and $B \leq_{Tes} C$. Hence $\frac{A}{T} \leq_{e} \frac{C}{T}$ and $\frac{B}{T} \leq_{e} \frac{C}{T}$, by [5, Lem. 2.3, P. 17]. Now consider the following two short exact sequences:

$$0 \to \frac{A}{T} \stackrel{i}{\to} \frac{C}{T} \stackrel{\pi 1}{\to} \frac{C/T}{A/T} \to 0$$
$$0 \to \frac{B}{T} \stackrel{j}{\to} \frac{C}{T} \stackrel{\pi 2}{\to} \frac{C/T}{B/T} \to 0$$

Where i, j are inclusion map and π_1 , π_2 are the natural epimorphisms. Since $\frac{A}{T} \leq_e \frac{C}{T}$ and $\frac{B}{T} \leq_e \frac{C}{T}$, then $\frac{C/T}{A/T}$ and $\frac{C/T}{B/T}$ are singular, by [2, Prop.1.20, P.31]. By the third isomorphis theorem, $\frac{C/T}{A/T} \cong \frac{C}{A}$ and $\frac{C/T}{B/T} \cong \frac{C}{B}$. Thus $\frac{C}{A}$ and $\frac{C}{B}$ are singular.

Definition (3.7): Let T be a submodule of a module M and let A and B \in S_T, then we say that A β_{T} B if $A \cap B \leq_{Tes} A \text{ and } A \cap B \leq_{Tes} B$.

Theorem (2.21): Let T, A and B be submodules of a module M such that $M = A \bigoplus_{T} B$ and $T \leq A \cap B$. If M is T-extending module, if every T-closed submodule

Examples (3.8):

(1) The module Z_4 as Z-module . Let $T = \{\overline{0}\}$, A = $\{\overline{0},\overline{2}\}$ and $B = Z_4$, then $A \cap B = A \leq T_{es} A$ and $A \cap B = A \leq_{Tes} B$. Thus $\{\overline{0}, \overline{2}\} \beta_T Z_4$.

(2) Consider the module $Z_{P\infty}$ as Z-module . Let $T = (\frac{1}{p^n} + Z)$, $A = (\frac{1}{p^m} + Z)$ and where n, $m \in Z$ and m > n and let $B = Z_P^{\infty}$. Since by (3.2-3), $A \leq _{Tes} Z_P^{\infty}$. and $A \leq_{\text{Tes}} A \text{.Then } Z_p^m \beta_T Z_P^{\infty}.$ (3) The module Z_{12} as Z-module. Let $T = \{\overline{0}, \overline{6}\},$

A = { $\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}$ } and B = Z₁₂, then A \cap B = A \leq Tes A . But A is not T-essential in Z_{12} , by (3.2-2). Therefore $\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}\$ is not related to Z_{12} by β_T .

Properties (3.9): Let T, A and B be a submodules of a module M such that A, B \in S_T. Then A β _T B if and only if $\frac{A}{T}\beta \frac{B}{T}$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mathbf{P} & \mathbf{T} \\ \hline \mathbf{Proof:} \end{array} \end{array} \xrightarrow{\mathbf{P}} & \mathbf{Suppose that } \mathbf{A} \ \beta_{\mathrm{T}} \ \mathbf{B}, \ \text{then } \mathbf{A} \cap \mathbf{B} \leq_{\mathrm{Tes}} \mathbf{A} \ \text{ and } \\ \hline \mathbf{A} \cap \mathbf{B} \leq_{\mathrm{Tes}} \mathbf{B}. \ \text{Then } \frac{\mathbf{A} \cap \mathbf{B}}{\mathbf{T}} \leq_{\mathrm{e}} \frac{\mathbf{A}}{\mathbf{T}} \ \text{and } \frac{\mathbf{A} \cap \mathbf{B}}{\mathbf{T}} \leq_{\mathrm{e}} \frac{\mathbf{B}}{\mathbf{T}} \ \text{, by [5, Lem. 2.3, p. 17]}. \ \text{Thus } \frac{\mathbf{A}}{\mathbf{T}} \ \beta \frac{\mathbf{B}}{\mathbf{T}} \ \text{.} \\ \end{array} \\ \begin{array}{l} \leftarrow \end{array} \right) \ \text{Let } \frac{\mathbf{A}}{\mathbf{T}} \ \beta \frac{\mathbf{B}}{\mathbf{T}} \ \text{, then } \frac{\mathbf{A} \cap \mathbf{B}}{\mathbf{T}} \leq_{\mathrm{e}} \frac{\mathbf{A}}{\mathbf{T}} \ \text{and } \frac{\mathbf{A} \cap \mathbf{B}}{\mathbf{T}} \leq_{\mathrm{e}} \frac{\mathbf{B}}{\mathbf{T}} \ \text{.} \\ \hline \mathbf{A} \cap \mathbf{B} \leq_{\mathrm{Tes}} \mathbf{A} \ \text{and } \mathbf{A} \cap \mathbf{B} \leq_{\mathrm{Tes}} \mathbf{B} \ \text{, by [5, Lem. 2.3, P. 17]}. \end{array}$

Thus $A \beta_T B$.

Proposition (3.10): The $\beta_{\rm T}$ is an equivalence relation.

<u>Proof:</u> Clearly that β_T is reflexive and symmetric . We

want to show β_T is transitive, let A, B and C \in S_T such that A β_T B and B β_T C. Since A β_T B and B β_T C, then $A \cap B \leq_{Tes} A$, $A \cap B \leq_{Tes} B$, $B \cap C \leq_{Tes} B$ and $B \cap C \leq_{Tes} C$. Let L be a submodule of A such that $(A \cap C) \cap L \leq T$, then $(B \cap C) \cap (A \cap B \cap L) \leq T$. Since $B \cap C \leq {}_{Tes} B$, then $A \cap B \cap L \leq T$. Hence $(A \cap B) \cap (A \cap L) \leq T$. But $A \cap B \leq_{Tes} A$, therefore $A \cap L \leq T$. Since $L \leq A$, then $L \leq T$. So $A \cap C \leq_{Tes} A$. Similarly A \cap C \leq Tes C. Thus β_T is an equivalence relation.

Proposition (3.11):Let T, A and B be submodules of a module M such that A and B \in S_T .Then A β _T B if and only if

<u>Proof</u>: \Rightarrow) Suppose that A β_T B and let C be a submodule of M such that A \cap C \leq T .Then A \cap B \cap C \leq T , hence $(A \cap B) \cap (B \cap C) \leq T$. But $A \cap B \leq_{Tes} B$, therefore $B \cap C \leq T$. Now let $B \cap D \leq T$, where D is a submodule of M. Then $A \cap B \cap D \leq T$ and hence $(A \cap B) \cap (A \cap D) \leq T$. But $A \cap B \leq_{Tes} A$, therefore $A \cap D \leq T$.

 \Leftarrow) To show A β_T B. Let L be a submodule of A such that $A \ \cap \ B \ \cap \ L \ \leq \ T$.Since $A \ \cap \ (B \ \cap \ L) \ \leq \ T$, then by our assumption $B \cap L = B \cap (B \cap L) \leq T$. Hence $A \cap L \leq T$. But $L \leq A$, therefore $L \leq T$. Similarly , let K be a Submodule of Bsuch that $(A \cap B) \cap K \leq T$. Then by our assumption $A \cap K$ =A \cap (A \cap K) \leq T . Hence B \cap K \leq T . But K \leq B , therefore K \leq T. Thus A β_T B.

Proposition (3.12): Let T, A and B be submodules of a module M such that A and B \in S_T. Then A β_T B if and only if for each $x \in A - T$, $y \in B - T$ there exists r, $r_1 \in R$ such that $rx \in B - T$ and $r_1y \in A - T$.

Proof: Assume that A β_T B, then $A \cap B \leq _{Tes} A$ and $A \cap B \leq_{Tes} B$. Hence for each $x \in A - T$ there exists $r \in R$ such that $rx \in (A \cap B) - T$. Thus $rx \in B - T$. Similarly, for each $y \in B - T$ there exists $r_1 \in R$ such that $r_1y \in (A \cap B) - T$ and hence $r_1y \in A - T$.

For the converse, assume that $x \in A - T$. Then there exists $r \in R$ such that $rx \in B - T$. So $rx \in (A \cap B) - T$. Thus $A \cap B \leq_{Tes} A$. Now let $y \in B - T$, then there exists $r_1 \in R$ such that $r_1y \in A - T$. Hence $r_1y \in (A \cap B) - T$. So $A \cap B \leq_{Tes} B$. Thus $A \beta_T B$.

Proposition (3.13): Let T , A₁ , A₂ , B₁ and B₂ be submodules of a module M such that A₁, A₂ , B₁ and B₂ \in S_T . If A₁ β _T B₁ and A₂ β _T B₂ , then (A₁ \cap A₂) β _T (B₁ \cap B₂).

<u>Proof:</u> Suppose that $A_1 \ \beta_T \ B_1$ and $A_2 \ \beta_T \ B_2$. Then $A_1 \cap B_1 \leq_{Tes} A_1$, $A_1 \cap B_1 \leq_{Tes} B_1$, $A_2 \cap B_2 \leq_{Tes} A_2$ and $A_2 \cap B_2 \leq_{Tes} B_2$. Hence $(A_1 \cap A_2) \cap (B_1 \cap B_2) \leq_{Tes} A_1 \cap A_2$ and $(A_1 \cap A_2) \cap (B_1 \cap B_2) \leq_{Tes} B_1 \cap B_2$, by [9, Prop.2.6 . P. 903]. Hence $(A_1 \cap A_2) \ \beta_T (B_1 \cap B_2)$.

<u>Proposition (3.14)</u>: Let $f : M \to N$ be an epimorphism and T, A, B be submodules of N such that A and $B \in S_T$. If A $\beta_T B$, then $f^{-1}(A) \beta_f^{-1}(T) f^{-1}(B)$.

Proof: Let A and B be submodules of N such that A β_{T} B, then A \cap B \leq_{Tes} A and A \cap B \leq_{Tes} B. Hence by [5, Lem. 2.15, P. 20], f^{-1} (A \cap B) \leq_{f}^{-1} (Ties f^{-1} (A), implies that f^{-1} (A) $\cap f^{-1}$ (B) \leq_{f}^{-1} (Ties f^{-1} (A). Since A \cap B \leq_{Tes} B, then by [5, Lem. 2.15, P. 20], f^{-1} (A \cap B) \leq_{f}^{-1} (Ties f^{-1} (B), implies that f^{-1} (A) $\cap f^{-1}$ (B) \leq_{f}^{-1} (B). Thus f^{-1} (A) β_{T} f^{-1} (B). **Proposition (3.15):** Let T, A and B be submodules of a module M such that A and B \in S_T. If A β_{T} B, then $\frac{A}{A \cap B}$ and $\frac{B}{A \cap B}$ are singular.

Proof: Assume that A $\beta_T B$. Then A $\cap B \leq_{\text{Tes}} A$ and A $\cap B \leq_{\text{Tes}} B$. Then $\frac{A \cap B}{T} \leq_e \frac{A}{T}$ and $\frac{A \cap B}{T} \leq_e \frac{B}{T}$, by [5, Lem. 2.3, P. 17].

Now consider the following two short exact sequences:

where i, j are inclusion map and π_1 , π_2 are the natural epimorphisms. Since $\frac{A \cap B}{T} \leq e \frac{A}{T}$ and $\frac{A \cap B}{T} \leq e \frac{B}{T}$, then $\frac{A/T}{(A \cap B)/T}$ and $\frac{B/T}{(A \cap B)/T}$ are singular, by [2, Prop.1.20, P.31]. Hence by the third isomorphism theorem, $\frac{A/T}{(A \cap B)/T} \cong \frac{A}{A \cap B}$ and $\frac{B/T}{(A \cap B)/T} \cong \frac{A}{A \cap B}$ and $\frac{B/T}{(A \cap B)/T} \cong \frac{A}{A \cap B}$. Thus $\frac{A}{A \cap B}$ and $\frac{B}{A \cap B}$ are singular.

Corollary (3.16): Let T, A and B be submodules of a module M such that A and B \in S_T. If A β_T B, then $\frac{A+B}{A}$ and $\frac{A+B}{B}$ are singular.

<u>Proof:</u> Clear by the second isomorphism theorem.

Proposition (3.17): Let $\{M_{\alpha}\}_{\alpha \in \Lambda}$ be a family of modules and T_{α} , A_{α} and B_{α} be submodules of M_{α} , for each $\alpha \in \Lambda$ such that $T_{\alpha} \leq A_{\alpha} \cap B_{\alpha}$. If $A_{\alpha} \beta_{T \alpha} B_{\alpha}$, for each $\alpha \in$ Λ , then $(\bigoplus_{\alpha \in \Lambda} A_{\alpha}) \beta_{\bigoplus_{\alpha} \in \Lambda} T_{\alpha} (\bigoplus_{\alpha \in \Lambda} B_{\alpha})$.

 $\begin{array}{l} \underline{\operatorname{Proof}} & : \text{ Let } A_{\alpha} \ \beta_{T\alpha} \ B_{\alpha} \text{ for each } \alpha \in \Lambda \text{ ,then } \\ A_{\alpha} \cap B_{\alpha} \leq_{(T\alpha)es} A_{\alpha} \text{ and } A_{\alpha} \cap B_{\alpha} \leq_{(T\alpha)es} B_{\alpha} \text{ . Hence by } \\ [5, \text{ Lem. 2.3, P. 17]} \ . \frac{A\alpha \cap B\alpha}{T\alpha} \leq_{e} \frac{A\alpha}{T\alpha} \text{ and } \frac{A\alpha \cap B\alpha}{T\alpha} \leq_{e} \frac{B\alpha}{T\alpha} \text{ .} \\ \text{Then by [1], } \oplus_{\alpha \in \Lambda} \frac{A\alpha \cap B\alpha}{T\alpha} \leq_{e} \oplus_{\alpha \in \Lambda} \frac{A\alpha}{T\alpha} \text{ and } \oplus_{\alpha \in \Lambda} \frac{A\alpha \cap B\alpha}{T\alpha} \leq_{e} \Theta_{\alpha \in \Lambda} \frac{A\alpha \cap B\alpha}{T\alpha} = \Theta_{\alpha \in \Lambda} \frac{A\alpha \cap B\alpha}{\Theta_{\alpha \in \Lambda} T\alpha} = \Theta_{\alpha \in \Lambda} \frac{A\alpha \cap B\alpha}{\Theta_{\alpha \in \Lambda} T\alpha} = \Theta_{\alpha \in \Lambda} \frac{A\alpha \cap B\alpha}{\Theta_{\alpha \in \Lambda} T\alpha} = \Theta_{\alpha \in \Lambda} \frac{A\alpha \cap B\alpha}{\Theta_{\alpha \in \Lambda} T\alpha} = \Theta_{\alpha \in \Lambda} \frac{A\alpha \cap B\alpha}{\Theta_{\alpha \in \Lambda} T\alpha} = \Theta_{\alpha \in \Lambda} A\alpha \text{ and hence } \Theta_{\alpha \in \Lambda} (A\alpha \cap B\alpha) = (\Theta_{\alpha \in \Lambda} T\alpha)es \Theta_{\alpha \in \Lambda} A\alpha \text{ and hence } \Theta_{\alpha \in \Lambda} (A\alpha \cap B\alpha) \cap (\Theta_{\alpha \in \Lambda} B\alpha) \leq (\Theta_{\alpha \in \Lambda} T\alpha)es \Theta_{\alpha \in \Lambda} B\alpha - M\alpha \text{ and } (\Theta_{\alpha \in \Lambda} A\alpha) \cap (\Theta_{\alpha \in \Lambda} B\alpha) \leq (\Theta_{\alpha \in \Lambda} T\alpha)es \Theta_{\alpha \in \Lambda} B\alpha - M\alpha \text{ and } (\Theta_{\alpha \in \Lambda} A\alpha) \cap (\Theta_{\alpha \in \Lambda} B\alpha) \leq (\Theta_{\alpha \in \Lambda} T\alpha)es \Theta_{\alpha \in \Lambda} B\alpha - M\alpha \text{ and } (\Theta_{\alpha \in \Lambda} A\alpha) \cap (\Theta_{\alpha \in \Lambda} B\alpha) \in (\Theta_{\alpha \in \Lambda} T\alpha)es \Theta_{\alpha \in \Lambda} B\alpha - M\alpha \text{ and } (\Theta_{\alpha \in \Lambda} A\alpha) \cap (\Theta_{\alpha \in \Lambda} B\alpha) \in (\Theta_{\alpha \in \Lambda} T\alpha)es \Theta_{\alpha \in \Lambda} B\alpha - M\alpha) = (\Theta_{\alpha \in \Lambda} A\alpha) \cap (\Theta_{\alpha \in \Lambda} B\alpha) \in (\Theta_{\alpha \in \Lambda} A\alpha) \cap (\Theta_{\alpha \in \Lambda} B\alpha) = (\Theta_{\alpha \in \Lambda} A\alpha) \cap ($

References:

[1] Goodearl, K. R. Ring Theory, Nonsingular Rings and Modules, Marcel Dekker, New York., 1976.

[2] N.V. Dungh, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Mathematics Series 313, London, New York, (1994).

[3] S.H. Mohamed, and B. J. Muller, continuous and discrete Modules, London Math. Soc. LNS 147 Cambridge University Press, Cambridge, (1990).

[4] E. Akalan, G. F. Birkenmeier and A. Tercan, Goldie Extending Modules ,Comm. Algebra 37:2, PP(663-683). (2009),

[5] Safaeeyan, S. and Saboori Shirazi, N. Essential submodules with respect to an arbitrary submodule .Journal of Mathematical Extension, **7**(3): PP(15-27). **2013.**

[6] E. A. Al-Dhaheri and B. H. Al-Bahrani , On T – Closed Submodules, International Journal of Science and Research (IJSR), Volume 7 Issue 6, June 2018.

[7] V. Erdogdu , Distributive Modules , Can. Math. Bull 30 PP(248-254), (1987),

[8] E. BUYUKASIK and Y. M DEMIRCI, Weakly distributive modules. Applications to supplement submodules, Indian Acad. Sci. (Math. Sci.) Vol. 120, No. 5, November PP. 525–534, (2010).

[9] Al-Dhaheri and Al-Bahrani , On Essential (Complement) Submodules with Respect to an Arbitrary Submodule , Iraqi Journal of Science, Vol. 59, No.2B, pp: 902-906 , 2018.

[10] E. M. Kamil ,GOLDIE EXTENDING (LIFTING) MODULES M.Sc. Thesis, College of science , University of Baghdad (2014).