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Abstract 
 

In this paper we introduce the concepts of the T-direct sum and T-extending modules and we give some basic properties of 

these types          of modules. Also we define the relations αT and 𝛽T  on the set of submodules containing T of a module M and 
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every T-closed submodule of  M which contains T is a  

T-direct summand of  M, see proposition (2.15). 

In section three , we will define the following relation  : 

Let A and B be submodules of a module M with T ≤ A 

and T ≤ B . We say that A αT B if there exists a 

submodule C such that A ≤ Tes C and  B ≤ Tes C.   

Also we define the following relation : Let A and B be 

submodules of a module M with T ≤ A and T ≤ B . We 

say that A 𝛽T B if A ∩ B ≤ Tes A and A ∩ B ≤ Tes B.               

We prove that : The 𝛽T is an equivalence relation , see 

proposition (3.10). 

2. The T-extending modules 

In this section , we will introduce the concepts of the    

T-direct sum and T-extending modules and we 

illustrate it by some examples. We also give some basic 

properties of these type of modules. 

Definition (2.1): Let T, A and B be submodules of a 

module M. M is called T-direct sum of A and B 

(denoted by M = A ⨁T B). If M = A + B and  A ∩ B ≤ T.                   

In this case , each of A and B is called a T-direct 

summand of M .                   

Let M be a module . Clearly that every direct summand 

of M is a T-direct summand. And when T = 0, a 

submodule A of M is a T-direct summand of M if and 

only if A is a direct summand of M.  

Examples (2.2): 
(1) Consider the module Z as Z-module and let T = 6Z . 

Clearly that  Z = 2Z ⨁T 3Z . But 2Z is not a direct 

summand of Z . Now let T = 4Z . 2Z ∩ 3Z = 6Z ≰ 4Z , 

then Z is not 4Z-direct sum of  2Z and 3Z. 

 (2) The Z12 as Z-module. Let T = {0̅,6̅},                           

A = {0̅,2̅,4̅, 6̅,8̅,10̅̅̅̅ } and B ={0̅,3̅,6̅,9̅}. One can easily 

show that A is {0̅,6̅}-direct summand of Z12 , and A is 

not direct summand of Z12 .                                                                                                 

Proposition (2.3): Let T, A and B be submodules of a 

module M such that 
M

T
 =  

A

T
 ⨁ 

B

T
 . Then M = A ⨁T B.  

 Proof: suppose that  
M

T
 =  

A

T
 ⨁ 

B

T
 . Then M = A + B and            

A

T
 ∩ 

B

T
 = 

A ∩ B

T
 = 0 and hence A ∩ B = T. Thus                   

M = A ⨁T B     

Note: The converse of proposition is not true in general , 

for example . Consider  the  module Z  as  Z-module  and  

 

1- Introduction 
 

In this paper, all rings are associative with identity and 

all modules are unitary left R-modules. Recall that a 

submodule A of an R-module M is essential submodule 

of M{denoted by A ≤ e M}, if for every B ≤ M,               

A ∩ B= 0 implies that B = 0. 

A submodule B of a module M is called complement for 

a submodule A of M if it is maximal with respect to the 

property that A ∩ B = 0. More details about essential 

submodules and complement can be found in [1] .  

A module M is an extending module (denoted by       

CS- module), if every submodule of  M is essential in a 

direct summand of  M , see [2, 3].            

 Let M be a module. Recall the following relation on the 

set of submodules of M : A α B if there exists a 

submodule C of M such that A ≤ e C and B ≤ e C , see 

[4]. Let M be a module. Recall the following relation on 

the set of submodules of M: A 𝛽 B if A ∩ B ≤ e A and    

A ∩ B ≤ e B, see [4]. In [5], the authors introduced the 

definition of T–essential (complement) submodules as 

follows: Let T ≨ M, a submodule A of M is called       

T–essential submodule of M {denoted by A ≤ Tes M}, 

provided that A ≰ T and for each submodule B of M ,    

A ∩ B ≤ T implies that B ≤ T. A submodule B of M is 

called a T –complement for a submodule A in M if B is 

maximal with respect to the property that A ∩ B ≤ T. In 

[6], we introduce the definition of T-closed submodules 

as follows: Let T , A and B be submodules of a module 

M . A is called a T–closed submodule of M (denoted by 

A ≤ Tc M), if A ≤ Tes B  implies that A + T = B, for every 

submodule B of M. 

In section 2 , we will introduce the definition of T-direct 

sum modules as follows : Let T, A and B be submodules 

of a module M. M is called T-direct sum of A and B 

(denoted by M = A ⨁T B). If M = A + B and A ∩ B ≤ T.                   

In this case, each of A and B is called a T-direct 

summand of M .We prove that Let T, A and B be 

submodules of a distributive module M. If B is a           

T-complement for A in M , then A ⨁T B ≤ Tes M , see 

proposition (2.11). Also we introduce the definition of   

T-extending modules as follows:             

Let T be a submodule of a module M. We say that M is             

T-extending module (denoted by T-CS modules) if 

every submodule of M which contains T is T-essential in 
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a T-direct summand of M. we prove that : Let M be a 

module. Then M is T-extending module if and only if.                             

Proof: Let M = A ⨁T B, then A is a T-closed in M , by 

(2.9). Since T ≤ A , then 
A

T
 is closed submodule of 

M

T
 , by                 

[6, Coro. 2.10 , p. 1684]. 

Proposition (2.11): Let T , A and B be submodules of a 

distributive module M . If B is a T-complement for A in 

M , then A ⨁T B ≤ Tes M.                                               

Proof: Let B be a T-complement for A in M, then           

A ∩ B ≤ T. Let C be a submodule of M such that           

(A ⨁T B) ∩ C ≤ T. Since M is a distributive module, 

then (A∩C) ⨁T (B∩ C) ≤ T and A ∩ (B ⨁T C) =           

(A ∩ B) ⨁T (A ∩ C) ≤ T. But B is maximal with respect  

to property that A ∩ B ≤ T, therefore B + C = B. Implies 

that C ≤ B. Hence C = C ∩ B ≤ T .Thus A ⨁T B ≤ Tes M.                    

Corollary (2.12): Let T, A and B be submodules of a 

distributive module M. If 
B

T
 is a relative complement for 

A

T
 in 

M

T
 then A ⨁T B ≤ Tes M.                                              

Proof: Suppose that 
B

T
 is a relative complement for 

A

T
 in 

M

T
 , then B is a T-complement for A in M, by  [9, Prop. 

3.4, p. 907]. Hence  A ⨁T B ≤ Tes  M, by (2.11).   

Proposition (2.13): Let A, B, C and D be submodules of 

a distributive module M such that T, A, C ≤ B . If            

M = B ⨁T D and C is a T-complement of A in B , then  

C ⨁T D is a T-complement for A in M.  

Proof:  Let M = B ⨁T D and C be a T-complement for A 

in B. Then M = B + D, B ∩ D ≤ T and A ∩ C ≤ T. Since 

C ≤ B, then C ∩ D ≤ B ∩ D ≤ T. As A ≤ B, then A ∩ D ≤ 

B ∩ D ≤ T. But M is a distributive module, hence we 

obtain A∩ (C ⨁T D) = (A ∩ C) ⨁T (A ∩ D) ≤ T .Now 

let L be a submodule of M such that C⨁T D ≤ L and       

A ∩ L≤ T. Then (L ∩ A) ∩ B = (A ∩ L) ∩ B ≤ T. But C 

is maximal with respect to the property that A ∩ C ≤ T, 

therefore, C = L ∩ B. Thus L = M ∩ L = ( B ⨁T D ) ∩ L 

= (B ∩ L) ⨁T (D ∩ L) = C ⨁T D. Which means C ⨁T D 

is a T-complement for A in M.                                                         

We introduce the following definition                                                    

Definition (2.14): Let T be a submodule of a module M. 

We say that M is T-extending module (denoted by T-CS 

modules) if every submodule of  M which contains T is 

T-essential in a T-direct summand of  M.                                                      

Proposition (2.15): Let M be a module. Then M is                

T-extending module if and only if every T-closed 

submodule of M which contains T is a T-direct summand 

of  M.   

Proof: Suppose that M is a T-extending module and let 

A be a T-closed submodule of M such that T ≤ A . Since 

M is a T-extending module , then there exist a T-direct 

summand D of M such that A ≤ Tes D . But A is a           

T-closed submodule of  M , therefore A + T = D .Thus  

A = D.                                        

Conversely, let A be a submodule of M such that T ≤ A . 

So there exist a T-closed submodule D in M such that     

A ≤ Tes D, by [6, Prop. 2.12, P.1684]. By our assumption 

D is a T-direct summand of M. Thus M is a T-extendin . 

Remark (2.16): Let T be a submodule of M. If T = 0  

then M is T-extending if and only if M is extending. 

Proof: Clear.  

let T = A = 4Z , B = 3Z. Cleary that M =A ⨁T B . But    

A ∩ B = 12Z ≠ T. Thus 
M

T
  is not the direct sum of  

A

T
  and 

B

T
 .                         

Remark (2.4): Let T , A and B be submodules of a 

module M such that A ≤ B ≤ M and T ≤ B . If A is a     

T-direct summand of M , then A is a T-direct summand 

of B.                                                                                                                    

Proof: Let A be a T-direct summand of M, then            

M = A ⨁T C, for some submodule C of M. Since A ≤ B , 

then by modular law, B = M ∩ B = (A ⨁T C) ∩ B =      

A ⨁T  (C ∩ B). Thus A is a T-direct  summand of B.  

A module M is called a distributive module if                                        

A ∩ (B + C) = (A ∩ B) + (A ∩ C) , for all submodules  

A , B and C of  M. See [7].                                                                                                                 

Lemma (2.5): [8] Let A , B and C be are submodules of 

a module M . Then the following statement are 

equivalent :                                                                                      

(1) A ∩ ( B + C ) =  ( A ∩ B ) + ( A ∩ C ). 

(2)  A + (B ∩ C) =  (A + B) ∩ (A + C). 

Proposition (2.6): Let T, A and B be submodules of a 

distributive module M such that M = A ⨁T B , then                    
M

T
 =  

A + T

T
 ⨁ 

B + T

T
 .                                                                     

Proof: Assume that M = A ⨁T B .Then 
M

T
 = 

A + B + T 

T
 =         

A + T

T
 + 

B + T

T
 . Since A ∩ B ≤ T , then (A ∩ B) + T ≤ T . 

Since M is a distributive  module, the (A + T) ∩ (B + T) 

= (A ∩ B) + T ≤ T, by lemma (2.5). But                          

T ≤ (A + T) ∩ (B + T) , therefore (A + T) ∩ (B + T) = T . 

Hence 
A +T

T
 ∩ 

B +T

T
 = 0. Thus  

M

T
 = 
A + T

T
 ⨁ 

B +T

T
 . 

Proposition (2.7): Let T , A and B be submodules of a 

module M such that A ≤ B . If A is T-direct summand of 

B and B is T-direct summand of M , then A is T-direct 

summand of M.      

Proof: Suppose that A is T-direct summand of B , then          

B = A ⨁T C  ,  where C be a submodule of  B . Since  B  

is T-direct summand of M, then M = B ⨁T D , where D 

be a submodule of  M. Implies that M = (A ⨁T C) ⨁T D . 

Hence M = (A + C) + D = A + (C + D) and                     

A ∩ (C ∩ D) = (A ∩ C) ∩ D ≤ T. Then                            

M =A ⨁T (C ⨁T D). Thus A is T-direct summand of M. 

Proposition (2.8): Let T, A and B be submodules of a 

distributive module M such that M =A ⨁T B .Then B + T 

is a T-complement for A + T in M.                                  

Proof: Suppose that M is a distributive module and                

M = A ⨁T B . Then by (2.6) , 
M

T
 =  

A + T

T
 ⨁ 

B + T

T
 . Thus   

B + T is a T-complement for A+T in M, by 

[9,Coro.3.5,p. 907] 

 Corollary (2.9): Let T, A and B be submodules of a 

distributive module M such that M = A ⨁T B . Then      

A + T is T-closed submodule of M.  

Proof: Assume that M = A⨁T B, then 
M

T
 = 

A + T

T
 ⨁ 

B + T

T
 , 

by (2.6). Then 
A + T

T
 is closed in 

M

T
 by [1] . Thus A + T is 

T-closed submodule of M, by [6 , Prop. 2.9 , p. 1684].                                                                                                                                                                                                                         

Corollary (2.10): Let T , A and B be submodules of 

adistributive module M such that T ≤ A and M =A⨁T B . 
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Then  
A

T
  is a closed submodule of  

M

T
 .                              

K of  M which containing T and either K ∩ A ≤ T or                 

K ∩ B ≤ T is a T-direct summand of M. 
Proof: Assume K is T-closed of M such that T ≤ K and             

T = K ∩ A. Since M is T-extending module , then K is a          

T-direct summand of M by , (2.15) . 

Theorem (2.22): Let T , A and B be submodules of a 

module M such that M = A ⨁T B and T ≤ A ∩ B . If  

every T-closed submodule K of M which containing T 

and either K ∩ A ≤ T or K ∩ B ≤ T is a T-direct 

summand of M , then every T-complement containing T 

for A or B in M is T-direct summand of M and               

T-extending module .  

Proof: Let K be a T-complement for A in M such that 

T≤ K . Then K is a T-closed submodule in M . by [6. Th. 

2.18 , P. 1684]. But K ∩ A ≤ T , therefore by our a 

assumption  K is a T-direct summand of M.                                                            

Let L be a T-closed submodule of K such that T ≤ L . 

Then L is a T-closed in M , by [6. Th.2.14 , p. 1684]. 

Since L ∩ A ≤ K ∩ A ≤ T. Then by our assumption L is 

a T-direct summand of M and hence L is a T-direct 

summand of K , by (2.4) . Thus K is a T-extending of M.    

Theorem (2.23): Let T , A and B be submodules of a 

module M such that M = A ⨁T B and T ≤ A ∩ B . If M is      

T-extending module, then every T-complement 

containing T for A or B in M is T-direct summand of M 

and T-extending module .  

Proof: Suppose that M is T-extending module and let K 

is a T-complement for A in M contain T , then K is       

T-closed in M, by [ 6. Th. 2.18 , P. 1684]. Since             

K ∩ A ≤ T , then   K is a     T-direct summand of M , by 

(2.21). Thus K is T-extending module , by (2.22).                                                                                                             

 

3- The relations αT and 𝛽T :  
In this section we define the relations αT and 𝛽T . Also 

we  give some basic properties of these relations.  

Definition (3.1): Let T be a submodule of a module M 

and let ST be the set of submodules of M that containing 

T. Let A and B ∈ ST . We say A αT B if  there exists a 

submodule C such that A ≤ Tes C and B ≤ Tes C .                                             

Let M be a module and T = 0 . Then one can easily show 

that A α B if and only if A αT B , for each submodules A 

and B of M.                                        

Examples (3.2): 

(1) The module Z4 as Z-module. Let T ={0̅, 2̅},                 

A ={0̅, 2̅} and B = Z4 . Since A and B are T-essential in 

Z4, then A αT B. 

(2) The module Z12 as Z-module . Let T = {0̅,6̅},                       

A = {0̅,2̅,4̅,6̅,8̅,10̅̅̅̅ } and B = Z12 . Since B is T-essential 

in Z12 and clearly that A ∩ {0̅,3̅,6̅,9} = T. But    

{0̅,3̅,6̅,9} ≰ T , therefore A is not T-essential in Z12 . 

Thus A is not relate to B by αT 

(3) The module ZP
∞
 as Z-module. Let T = (

1

Pn
 + Z),   A = 

(
1

Pm
 + Z) and D = (

1

Pr
+ Z),  where n, m, r ∈ Z and m, r > n 

.Let B be a submodule of ZP
∞
 such that A ∩ B ≤ T.  

Since ZP
∞
 is a uniserial module , then either A ≤ B or B ≤ 

A . If A ≤ B , we get A ∩ B = A ≤ T which is a 

contradiction . Thus B ≤ A and hence A ∩ B = B ≤ T . 

Thus A is T-essential submodule of ZP
∞
. By the same 

way D is T-essential in ZP
∞
  then A and D are T-essential 

in ZP
∞
. Thus  Zp

n
 αT Zp

m
 . 

       

Proposition (2.17): Every T-direct summand contain T 

of a distributive and T-extending module is T-extending 

module.                                                                            

Proof:  Let M be a distributive and T-extending module 

such that M = A ⨁T B and T ≤ A , where T , A and B are 

submodules of M. Let C be a T-closed submodule in A 

such that T ≤ C. Since A is a T-direct summand of  M, 

then A is a T-closed submodule of M, by (2.9). Thus C is 

a T-closed in M , by [6, Th. 2.14 , p. 1684]. But M is a  

T-extending , therefore C is a T-direct summand of  M 

by (2.15). Since  C ≤ A , then C is a T-direct summand of 

A , by (2.4).          

 Examples (2.18): 
(1) Consider the module Z6 as Z-module and let                

T ={0̅,2̅, 4̅}. Then Z6 and {0̅,2̅, 4̅} are they only 

submodules of Z6 that containing T. Since {0̅,2̅, 4̅} is a 

T-essential and a T-direct summand of Z6 and Z6 is a    

T-essential of Z6 .Then Z6 is T-extending module. 
(2) Consider the module Z as Z-module . Let T = 2Z , then Z 

and 2Z are they only submodules of Z that containing T . Since 

2Z is T-essential in 2Z and 2Z is T-direct summand of Z .Then 

Z is 2Z-extending module.                                

 (3) The module M = Z8⨁Z2 as a Z-module . It's known that M 

is not extending module , by [10, ex. (2.4.18). Ch.2] . Hence M 

is not {0}-extending module. Now let T = {0̅,2̅, 4̅,6̅}⨁Z2 . 

Since M and T are the only submodules that  containing T , 

then one can easily check that M is a T-extending module. 

Proposition (2.19): Let T be a submodule of a module 

M. If  
M

T
 is extending module, then M is a T-extending 

module.The converse is true if M is a distributive 

module.    

Proof: Let A is a submodule of M such that T ≤ A . 

Since 
M

T
 is an extending module , then there exist a direct 

summand 
B

T
 of  

M

T
 such that 

A

T
 ≤ e  

B 

T
 .Therefore A ≤ Tes B 

by [5,Lem. 2.3, P. 17] and B is a T-direct summand of 

M, by (2.3). Thus M is a T-extending .                                                                                                        

For the converse , Let M be a distributive module 
A

T
 be a 

submodule of 
M

T
 . Since M is T-extending and A is a 

submodule of M , then there exist a T-direct summand B 

of M such that A ≤ Tes B. Thus 
A

T
 ≤ e  

B

T
 , by [5, Lem. 2.3, 

p. 17]. Hence M = B ⨁T B1 , for some submodule B1 of 

M . But M is a distributive module , therefore                  
M

T
 = 

B

T
 ⨁ 

B1 + T

T
 , by proposition (2.6). So 

B

T
 is a direct 

summand of  
M

T
 . Thus 

M

T
 is extending.   

Theorem (2.20): Let T and A be  submodules of a                  

T-extending module M such that T ≤ A. If the 

intersection of A with any T-direct summand of M 

containing T is a T-direct summand of A then A is         

T-extending module.                                     

Proof: Let M be a T-extending module and N be a 

submodule of A such that T ≤ N, then there exist T-direct 

summand D of M such that T ≤ D and N ≤ Tes D . Since   

N ≤ A ∩ D, then N ≤ Tes A ∩ D, by [5, Prop. 2.12 , P. 

19]. By our  A ∩ D is a T-direct summand of A . Thus A 

is T-extending module . 
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Theorem (2.21): Let T , A and B be submodules of a 

module M such that M = A ⨁T B and T ≤ A ∩ B . If M is 

T-extending module  ,  if every T-closed submodule                                            
 

Examples (3.8):  

 (1) The module Z4 as Z-module . Let T = {0̅} ,A = 

{0̅,2̅} and B = Z4 , then A ∩ B = A ≤ Tes A and                           

A ∩ B = A ≤ Tes B . Thus {0̅,2̅} 𝛽T Z4 . 

 (2) Consider the module ZP∞ as Z-module . Let              

T =  (
1

Pn
 + Z) , A = (

1

Pm
 + Z) and where n , m ∈ Z and     

m > n and let B = ZP
∞
. Since by (3.2-3), A ≤ Tes ZP

∞
. and  

A ≤ Tes A
 
.Then  Zp

m
 𝛽T ZP

∞
. 

(3) The module Z12 as Z-module. Let T = {0̅,6̅},                        

A = {0̅,2̅,4̅,6̅,8̅,10̅̅̅̅ } and B = Z12 ,then A ∩ B = A ≤ Tes A 

. But A is not T-essential in Z12 , by (3.2-2). Therefore 

{0̅,2̅,4̅,6̅,8̅,10̅̅̅̅ } is not related to Z12 by 𝛽T . 
Properties (3.9): Let T , A and B be a submodules of a 

module M such that A , B ∈ ST . Then A 𝛽T B if and only 

if  
A

T
 𝛽  

B

T
  

Proof: ⇒) Suppose that A 𝛽T B, then A ∩ B ≤ Tes A  and            

A ∩ B ≤ Tes B. Then 
A ∩ B

T
 ≤ e  

A

T
  and 

A ∩ B

T
  ≤ e   

B

T
  , by [5, 

Lem. 2.3, p. 17]. Thus  
A

T
 𝛽 

B

T
 . 

⇐) Let 
A

T
 𝛽 

B

T
 , then  

A ∩ B

T
 ≤ e  

A

T
  and 

A ∩ B

T
 ≤ e 

B

T
 . Then                   

A ∩ B ≤ Tes A and A ∩ B ≤ Tes B , by [5, Lem. 2.3, P. 17]. 

Thus A 𝛽T B .                                                                    

Proposition (3.10): The 𝛽T is an equivalence relation. 

Proof: Clearly that 𝛽T is reflexive and symmetric . We 

want to show 𝛽T is transitive , let A , B and C ∈ ST such 

that A 𝛽T B and B 𝛽T C . Since A 𝛽T B and B 𝛽T C , then 

A ∩ B ≤ Tes A , A ∩ B ≤ Tes B , B ∩ C ≤ Tes B and             

B ∩ C ≤ Tes C . Let L be a submodule of A such that                  

(A ∩ C) ∩ L ≤ T , then (B ∩ C) ∩ (A ∩ B ∩ L) ≤ T . 

Since B ∩ C ≤ Tes B , then A ∩ B ∩ L ≤ T . Hence          

(A ∩ B) ∩ ( A ∩ L) ≤ T . But A ∩ B ≤ Tes A , therefore  

A ∩ L ≤ T . Since L ≤ A, then L ≤ T . SoA ∩ C ≤ Tes A . 

Similarly A ∩ C ≤ Tes C. Thus 𝛽T is an equivalence  

relation.  

Proposition (3.11):Let T , A and B be submodules of a module 

M such that A and B ∈ ST .Then A 𝛽T B if and only if               

A ∩ C≤ T implies B ∩ C ≤ T and B ∩ D ≤ T implies                 

A ∩ D ≤ T , for each submodules C and D of  M.                                   

Proposition (3.3): Let T be a submodule of a module M. 

Then A αT B if and only if  
A

T
 α 
B

T
 , for each A and B ∈ ST. 

Proof: Let A αT B . Then there exists a submodule C of 

M such that A ≤ Tes C and B ≤ Tes C. Then  
A

T
 ≤ e  

C

T
  and    

B

T
 ≤ e  

C

T
  , by [5,Lem. 2.3, P. 17].. Thus  

A

T
  α  

B

T
 .  

Conversely , let  
A

T
  α  

B

T
  , then there exists a submodule 

C

T
 

of  
M

T
 such that  

A

T
 ≤ e  

C

T
 and  

B

T
 ≤ e  

C

T
 . Then A ≤ Tes C and B 

≤ Tes C , by [5, Lem. 2.3, P. 17]. Thus A αT B . 

Remark(3.4): The αT is a reflexive and symmetric 

relation. 

Proof: Clear. 

Proposition (3.5): Let T be a submodule of a module M. 

Then M is T-extending if and only if for each submodule  

A ∈ ST , there exists a T-direct summand D ∈ ST such 

that A αT D  

Proof: ⇒) Suppose that M is T-extending , and let          

A ∈ ST . Since M is T-extending , then there exists a      

T-direct summand D ∈ ST such that A ≤ Tes D , we want 

to show that there exists a submodule B of M such that   

A ≤ Tes B and D ≤ Tes B. Let B = D , then  A ≤ Tes D and  

D ≤ Tes D . Thus A αT D. 

⇐) Let A ∈ ST , by our assumption , there exists a         

T-direct summand D ∈ ST such that A αT D. Thus there 

exists a submodule B ∈ ST such that A ≤ Tes B and           

D ≤ Tes B. It is enough to show that B is a T-direct 

summand of M . Let  M = D ⨁T D1  , where D1 is a 

submodule of M . Since  D ≤  B then M = B + D1 . Since 

D ∩ D1 ≤ T, then (B ∩ D) ∩ D1 ≤ T . But D  ≤ Tes B, 

therefore D1 ∩ B ≤ T . Hence M = B ⨁T D1 . Claim that 

B = D . To show that , Let  b ∈ B , then b  = d + d1 , 

where d ∈ D and d1 ∈ D1 .  So b –d = d1 ∈ (B ∩ D1) ≤ T ≤ 

D .Hence b =  d + d1 ∈ D . This implies that B = D . Thus 

M is a T-extending module .                                                                                    

Proposition (3.6): Let T, A and B be submodules of       

a module M such that A and B ∈ ST .If A αT B , then 

there exists a submodule C of M such that  
C

A
 and  

C

B
 are 

singular . 

Proof: Assume that A αT B, then there exists a 

submodule C ∈ ST  such that  A ≤ Tes C and B ≤ Tes C . 

Hence 
A

T
 ≤ e  

C

 T
 and  

B

T
 ≤ e  

C

 T
 , by [5, Lem. 2.3, P. 17]. Now 

consider the following two short exact sequences:                        

                           0 →  
A

T

𝑖
→  

C

 T
 
𝜋1
→   

C / T

 A / T
  → 0 

                           0 →  
B

T
  
𝑗
→  

C

 T
 
𝜋2
→   

C  / T

 B / T
  → 0 

Where i , j are inclusion map and  𝜋1 , 𝜋2 are the natural 

epimorphisms. Since  
A

T
 ≤ e  

C

 T
  and  

B

T
 ≤ e  

C

 T
 , then 

C / T

 A / T
  

and  
C / T

 B / T
  are singular , by [2, Prop.1.20, P.31] . By the 

third isomorphis theorem , 
C/ T

 A/ T
 ≌ 

C

 A
 and 

C / T

 B / T
 ≌ 

C

 B
 . Thus 

C

 A
 and 

C

 B
 are singular.  

Definition (3.7): Let T be a submodule of a module M 

and let A and B ∈ ST , then we say that A 𝛽T B if           

A ∩ B ≤ Tes A and  A ∩ B ≤ Tes B .                                                   

Proof:⇒) Suppose that A 𝛽T B and let C be a submodule of M 

such that A ∩ C ≤ T .Then A ∩ B ∩ C ≤ T , hence                  

(A ∩ B) ∩ (B ∩ C) ≤ T. But A ∩ B ≤Tes B ,therefore                 

B ∩ C≤ T. Now let B ∩ D ≤ T ,where D is a submodule of M . 

Then A ∩ B ∩ D ≤ T and hence (A ∩ B) ∩ (A ∩ D) ≤ T. 

ButA ∩ B ≤Tes A , therefore A ∩ D ≤ T . 

⇐) To show A 𝛽T B . Let L be a submodule of A such that      

A ∩ B ∩ L ≤ T .Since A ∩ (B ∩ L) ≤ T , then by our 

assumption B ∩ L =  B ∩ (B ∩ L) ≤ T. Hence A ∩ L ≤ T. But 

L ≤ A , therefore L ≤ T . Similarly , let K be a Submodule of B 

such that (A ∩ B) ∩ K ≤ T . Then by our assumption  A ∩ K 
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=A ∩ (A ∩ K) ≤ T . Hence B ∩ K ≤ T . But K ≤ B , therefore   

K ≤ T. Thus A 𝛽T B.   

Proposition (3.12): Let T, A and B be submodules of a 

module M such that A and B ∈ ST . Then A 𝛽T B if and 

only if for each  x ∈ A – T , y ∈ B – T there exists           

r , r1 ∈ R such that rx ∈ B – T and r1y ∈ A – T. 

Proof: Assume that A 𝛽T B, then A∩B ≤ Tes A and        

A∩B ≤ Tes B. Hence for each x ∈ A – T there exists r ∈ R 

such that  rx ∈ (A ∩ B) – T. Thus rx ∈ B – T . Similarly , 

for each  y ∈ B – T there exists r1 ∈ R such that              

r1y ∈ (A ∩ B) – T and hence r1y ∈ A – T. 

For the converse, assume that x ∈ A – T. Then there 

exists r ∈ R such that rx ∈ B – T. So rx ∈ (A ∩ B) – T . 

Thus A ∩ B ≤ Tes A. Now let y ∈ B – T , then there exists 

r1 ∈ R such that r1y ∈A – T. Hence r1y ∈ (A ∩ B) – T . 

So  A ∩ B ≤ Tes B. Thus A 𝛽T B.                                                                                                                                                                                                      
Proposition (3.13): Let T , A1 , A2 , B1 and B2 be 

submodules of a module M such that  A1 ,A2 , B1 and B2 

∈ ST . If A1 𝛽T B1 and A2 𝛽T B2  , then                             

(A1 ∩ A2) 𝛽T (B1 ∩ B2) . 

Proof: Suppose that A1 𝛽T B1 and A2 𝛽T B2 . Then                     

A1 ∩ B1 ≤ Tes A1 , A1 ∩ B1 ≤ Tes B1 ,  A2 ∩ B2 ≤ Tes A2 and          

A2 ∩ B2 ≤ Tes B2 . Hence  (A1 ∩ A2) ∩ (B1 ∩ B2) ≤ Tes A1 

∩ A2 and (A1 ∩ A2) ∩ (B1 ∩ B2) ≤ Tes B1 ∩ B2 , by            

[ 9, Prop.2.6 . P. 903]. Hence   (A1 ∩ A2) 𝛽T (B1 ∩ B2).                                                                    

Proposition (3.14): Let f  : M → N be an epimorphism 

and  T , A , B be submodules of  N such that A and         

B ∈ ST .  If A 𝛽T B , then  f
  -1

 (A)  𝛽 f
  -1

(T)   f
  -1

 (B) . 

Proof:   Let A and B be submodules of  N such that        

A 𝛽T B , then A ∩ B ≤ Tes A and A ∩ B ≤ Tes B . Hence by 

[5, Lem. 2.15, P. 20] ,   f 
-1

 (A ∩ B) ≤ f
  -1

(T)es   f
  -1

 (A) , 

implies that  f
  -1

 (A) ∩ f 
-1

 (B) ≤ f  
-1

 (T)es  f 
-1

 (A) . Since    

A ∩ B ≤ Tes B , then by [5, Lem. 2.15, P. 20],                     

f 
-1

 (A ∩ B) ≤ f 
-1

 (T)es f
  -1

 (B) , implies that                           

f
  -1

(A) ∩ f
  -1

(B) ≤ f  
-1

(T)es f
  -1

 (B). Thus f
  -1

 (A) 𝛽T  f
  -1

 (B).                                           

Proposition (3.15): Let T , A and B be submodules of a 

module M such that A and B ∈ ST . If A 𝛽T B , then 
A

A ∩ B
  

and 
B

A ∩ B
  are singular. 

Proof: Assume that A 𝛽T B . Then A ∩ B ≤ Tes A and                 

A ∩ B ≤ Tes B . Then   
A ∩ B

T
 ≤ e  

A

T
  and  

A ∩ B

T
 ≤ e  

B

T
 , by                      

[5, Lem. 2.3, P. 17].  

Now consider the following two short exact sequences: 

           0 →   
A ∩ B 

T
  
𝑖
→  

A

 T
  
𝜋1
→   

A / T

 (A ∩ B) / T
  → 0 

           0 →   
A ∩ B

T
  
𝑗
→  

B

 T
  
𝜋2 
→   

B / T

 (A ∩ B)/ T
  → 0      

where i , j are inclusion map and 𝜋1 , 𝜋2 are the natural 

epimorphisms . Since 
A ∩ B

T
 ≤ e  

A

T
 and 

A ∩ B

T
 ≤ e  

B

T 
 , then 

A / T

 (A ∩ B) / T
 and 

B / T

 (A ∩ B)/ T
 are singular , by [2, Prop.1.20, 

P.31] . Hence by the third isomorphism theorem,  
A / T

 (A ∩ B) / T
 ≌ 

A

A ∩ B
 and 

B / T

 (A ∩ B)/ T
 ≌ 

A

A ∩ B
. Thus  

A

A ∩ B
  and 

B

A ∩ B
  are singular.               

Corollary (3.16): Let T , A and B be submodules of a 

module M such that A and B ∈ ST .  If A 𝛽T B , then 
A + B

A
 

and 
A + B

B
 are singular. 

Proof: Clear by the second isomorphism theorem. 

Proposition (3.17): Let {M α}α ∈ʌ be a family of modules 

and  Tα , Aα and Bα be submodules of  M α , for each        

α ∈ ʌ such that Tα ≤ Aα ∩ Bα . If Aα  𝛽T α Bα , for each α ∈ 

ʌ ,  then (⨁ α ∈ ʌ A α ) 𝛽⨁ α ∈ ʌ Tα (⨁ α ∈ ʌ Bα) .  

Proof  : Let Aα 𝛽Tα Bα for each α ∈ ʌ ,then                       

Aα ∩ Bα ≤ (Tα)es Aα  and   Aα ∩  Bα ≤ (Tα)es Bα . Hence by 

[5, Lem. 2.3, P. 17] . 
Aα ∩ Bα

Tα
 ≤ e  

Aα

Tα
 and  

Aα ∩ Bα

Tα
 ≤ e  

Bα

Tα
 . 

Then by [1],  ⨁α ∈ ʌ 
Aα ∩ Bα

Tα
 ≤ e  ⨁α ∈ ʌ   

Aα

Tα
  and  ⨁α ∈ 

ʌ 
Aα ∩ Bα

Tα
  ≤ e ⨁α ∈ ʌ    

Bα

Tα
 .  But  ⨁α ∈ ʌ 

Aα ∩ Bα

Tα
 ≌ 

⨁α ∈ ʌ(Aα ∩ Bα)

⨁α ∈ ʌT α
, ⨁α ∈ ʌ  

Aα

Tα
  ≌  

⨁α ∈ ʌ Aα

⨁α ∈ ʌTα
 and     ⨁ α ∈ ʌ 

Bα

Tα
  ≌  

⨁α ∈ ʌ Bα

⨁α ∈ ʌ Tα 
 , therefore 

⨁α ∈ ʌ(Aα ∩ Bα)

⨁α ∈ ʌT α
 ≤ e 

⨁α ∈ʌ Aα

⨁α ∈ ʌTα
  and 

 
⨁α ∈ ʌ (Aα ∩ Bα)

⨁ α ∈ʌT α
 ≤ e 

⨁α ∈ ʌ Bα

⨁α ∈ ʌTα
 . Then by [5, Lem. 2.3, P. 17],  

⨁α ∈ ʌ ( Aα ∩ Bα) ≤ (⨁ α ∈ ʌ Tα)es ⨁α ∈ ʌ Aα and hence ⨁α ∈ ʌ 

(Aα ∩ Bα) ≤ (⨁α ∈ʌ Tα)es ⨁α ∈ ʌ Bα . Hence                           

(⨁α ∈ ʌ Aα) ∩ (⨁α ∈ ʌ Bα) ≤ (⨁α ∈ ʌ Tα)es ⨁α ∈ ʌ Aα and                                                           

(⨁α ∈ ʌ Aα) ∩ (⨁α ∈ ʌ Bα) ≤ (⨁α ∈ ʌ Tα)es ⨁α ∈ ʌ Bα . Thus       

(⨁α ∈ ʌ Aα) 𝛽 ⨁α ∈ ʌ Tα (⨁α ∈ ʌ Bα).                                                                                         
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