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Abstract: In this article a mathematical model that describes the 

spread of infectious disease in a population is proposed and 

studied. This model describes the spread of cholera disease with 

external source of disease and nonlinear recovery function h(I), 

The local and global stability of the model is studied. Our results 

suggest that the basic reproduction number itself is not enough 

to describe whether cholera will prevail or not. Finally, the 

global dynamics of this model is studied numerically. 
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1. Introduction: 
     Cholera is a dangerous disease caused by the bacterial 

Vibrio Cholera. It infects the small intestine. There are 

many types (strains) of the V. C.  Bacterial. Some of  

them cause more serious illnesses than others. Because of 

this, some human who get cholera have no symptoms; 

others have symptoms that are not very bad, and others 

have very bad symptoms [1-4].  

     Cholera is a very old epidemic. It still affects many 

human throughout the world. Estimates from 2010 say 

that between 3 million and 5 million people get Cholera 

every year, and 58000-130000 people die from the disease 

every year. Today, Cholera is called a pandemic. 

However, it is most common in developing countries, 

especially in children [5-8]. Cholera is an acute intestinal 

infection caused by the bacterial V. C. Its dynamics are 

complicated by the multiple interactions between the 

human host, the pathogen and the environment which 

contribute to both direct human-to-human and indirect 

environment to-human transmission pathways [9].  

 

 
Figure 1: Simplified life cycle of cholera disease 

 

Below, we briefly review some representative 

mathematical models proposed by various authors. In 

2001, [10] extended the model of Capasso and Paveri-

Fontana. He added an equation for the dynamics of the 

susceptible population. And he studied the role of the 

aquatic reservoir in the endemic and epidemic dynamics 

of Cholera.       

    In [11], Pascual et al., Generalized Codeco model by 

including a 4th equation for the volume of water in which 

the formative live following [10]. In 2009, Richard I. Joh 

et al., considered the dynamic of infectious disease for 

which the primary mode of transmission is indirect and 

mediated by contact with a contaminated reservoir [12]. 

Also, Ali and Zhou studied the model for the Cholera 

disease [13]. In this article is organized as follows. In 

Section 2, we introduce the generalized model and state 

the necessary assumptions. In Sections 3, we find the each 

equilibrium point in this model with derive the B. R. N. 

using the next-generation matrix approach. In Section 4 

and 5, we show the local and global stability of the all 

equilibrium points. Finally, in order to confirm our 

obtained results and specify the effects of model's 

parameters on the dynamical behavior, numerical 

simulation of the cholera model is performed in Section 6.      

 

2. The mathematical model: 
   In this articale, we suppose the epidemic model descript 

the cholera disease by the following equations: 
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For all time t, the population are divided into three 

classes: a susceptible class S(t), an infectious class I(t) and 

the virus class B(t), that is to say N=S(t)+I(t). All the 

parameters are positive constant, with descript in the 

following table: 

 
Table 1: Description of parameters and frequently used 

symbols. 

 

      Clearly, the equations of system (1) are continuously 

differentiable. In fact there is Lipschizan function on
2
R . 

Therefore, the solution of system (1) with non-negative 

initial conditions is uniformly bounded as shown in the 

following theorem. 

 

Theorem 1: Each the solutions of system (1), which are 

initiate in
2
R , are uniformly bounded. 

proof: Let (S(t),I(t)), be any solutions of the system (1) 

with non-negative initial conditions (S(0),I(0)). Since 

N=S(t)+I(t), then ISN   , This gives: .1 ANN    

    Now, by using Gronwall lemma [1], it obtains that: 
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solutions of system (1) that in ,2
R  are confined in reign: 
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ANRISH   . And the feasible region 

of pathogen population for system (1) 

is }0:{
21

ABBZ  . Define ZH  . 

Let .Int , denote the interior of  . It is easy to verify that 

the region  is positively invariant region with respect to 

Let .Int , denote the interior of  . It is easy to verify that 

t 

 

3. Existence of Equilibrium Point 
   In system (1), there are always two biologically feasible 

points, namely the infection-free equilibrium 

point )0,0,()0,0,(
1

ASE  . This point exists when the 

basic reproduction number 1R , where: 
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The positive equilibrium point ),,( 1111 BISE exists when 

where: 
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And 1I is the positive solution of the following equation: 
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Clearly, equation (5) has unique positive root by 1I if and 

only if 5,4,3,2,0  iDi . 

System (1), hence, system (1) will be considered 

mathematically and epidemiologically well posed in  . 

 

 

4. Local and Global Stable Analysis of E  

    In this part, the stable analysis of D. F. point 

)0,0,(
1

AE of the system (1) as shown in the following 

theorems. 

Theorem 2: The disease-free equilibrium point of 

)0,0,(
1

AE the system (1) is local asymptotically stable 

provided that: 

 )0(11 hrS                                            (6) 
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The birth rate 

The infection rate 

 

The infection rate by external source 02   

Dead rate 

The treatment rate 

The disease related death 

 

The recovery function, with m,v and w>0 

The new infected members from I class 

The carrying capacity 
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Proof: The Jacobian matrix of system (1) at E that 

denoted by )( EJ and we can be written as: 
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Clearly, the characteristic equation of the Jacobian matrix 

)( EJ of the system (1) at the disease-free equilibrium 

point E is given by 032
2

1
3  AAA   

Here: 
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 ][ 331132233322211222112 aaaaaaaaaaA   

 

][ 1332213322113223112112333 aaaaaaaaaaaaA 

 

Further: 

321 AAA   

    Now according to (Routh-Hurwitz) criterion 

)0,0,(
1

AE will be local stable provided that 

3,1,0  iAi and 0321  AAA .Clearly: 

3,1,0  iAi  with 321 AAA   provided that 

condition (6-7) holds. Hence the proof is complete. 

 

Theorem 3: Let the disease-free equilibrium point E of 

System (1) is local stable. Then the basin of attraction 

of E , say
3)(  REB  , it is global stable provided the 

condition is satisfied: 
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Obviously, 01 V  for each initial point and then 1V  is a 

Lyap. function provided that condition (8) hold. Thus 

E is global stable in )( EB , and that complete the proof. 

 

5. Local with Global Stability Analysis of 

Positive Point 1E  

    In this part, the local and global dynamics of  system 

(1) is studied by use the Ruth-Hurwitz and Lyap.  function 

as shown in the theorems. 

 

Theorem 4: The positive point 1E of the system (1) is 

local stable if: 
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denoted by )( 1EJ and can be written as: 
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 Clearly, the characteristic equation of the Jacobian matrix 

)( 1EJ of the system (1) at the positive point 1E is given 

by 032
2

1
3  BBB   
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Here: 
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Further: 

321 BBB   

     Now according to (Routh-Hurwitz) criterion 1E will be 

local stable provided that 01 B ; 

03 B and 0321  BBB . Clearly, 3,1,0  iBi and 

0321  BBB , provided that condition (9-10) holds. 

Hence the proof is complete. 

Theorem 5:  If the positive point 1E of System (1) is 

local stable. Then it is global stable if satisfy the 

following conditions: 
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Therefore, according to the conditions (11-14) we obtain 

that: 
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Clearly, 02 V and then 2V is a Lyap. function provided 

that the given conditions (11-14) hold. Therefore, 1E is 

global stable. 

 

6. Numerical Simulation of system (1) 
     In this part, the dynamical behavior of system (1) is 

studied numerically. The objectives of this study are 

confirming our obtained analytical results and understand 

the effects of some parameters on the dynamics of system 

(1). Consequently, system (1) is solved numerically for 

different sets of initial conditions and for different sets of 

parameters. It is observed that, for the following set of 

hypothetical parameters that satisfies stability conditions 

of all equilibrium points )1,,( iEi system (1) has a 

globally asymptotically stable disease-free equilibrium 

point as shown in following figures. 
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Figure 2: The unique point of system (1) is global stable. 

In this case, A=500,  =0.00001, 1 =0.00001, 2 =0, 

 =0.01, 1 =0.1, 2 =0.3, r=0.05, m=1, v=2, w=0.1, 

K=5,  =0.01. And the trajectories of system (1) 

approaches to E =(5000,0,0), from three initial 

conditions are (2500,1000,500), (1000,2000,2000) and 

(500,500,1000). 

 

 

 

 
Figure 3: The positive point of system (1) is global 

stable. In this case, A=500,  =0.001, 1 =0.0001, 

2 =0.0001,  =0.01, 1 =0.1, 2 =0.3, r=0.05, m=1, 

v=2, w=0.1, K=5,  =0.01. And the trajectories of system 

(1) approaches to 1E =(1600,2075,95), from three initial 

conditions are (2500,1000,500), (2000,500,2000) and 

(500,2000,1000). 

 

     Now, we choose the set of hypothetical parameters 

A=500, 1 =0.0001, 2 =0.0001,  =0.01, 1 =0.1, 

2 =0.3, r=0.05, m=1, v=2, w=0.1, K=5,  =0.01. but we 

change the infection rate value (  =0.1,0.3,0.5) 

respectively, we get the trajectories of system (1) still 

approaches to positive point but the number of S(t) 

decrease while the numbers of the I(t) and virus class 

increases. 
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Figure 4: The trajectories of system (1): (a)  =0.1, (b) 

 =0.3, (c)  =0.5. 

 

    Now the effect of external sources in the environment 

on the dynamics of system (1) is studied by solving the 

system numerically for the parameters values 2 =0.1, 

0.3, 0.5 respectively, in following figure:  

 

 

 

 
Figure 5: The trajectories of system (1), we use, A=500, 

 =0.001, 1 =0.0001,  =0.01, 1 =0.1, 2 =0.3, 

r=0.05, m=1, v=2, w=0.1, K=5,  =0.01, with (a) 

2 =0.1, (b) 2 =0.3, (c) 2 =0.5. 

 

    According to Figure (5), as the spread of disease by 

increases the external sources parameter, the trajectory of 

system (1) approaches to the positive point. In fact as 

2 increases it is observed that the number of S(t) 

individuals decrease and the number of I(t) and virus 

individuals increases. 

 

     Clearly, we present the effect of treatment rate that is 

by change value for r=0.1, 0.3, 0.5 respectively, we get 

the trajectories of system (1) still approaches to positive 

point but the number of I(t) and virus individuals 

decreases while the S(t) individuals is increases.  
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Figure 6: The trajectories of system (1), we use, A=500, 

 =0.001, 1 =0.0001, 2 =0.0001,  =0.01, 1 =0.1, 

2 =0.3, m=1, v=2, w=0.1, K=5,  =0.01, with (a) r=0.1, 

(b) r=0.3, (c) r=0.5. 

 

    Similar results are obtained, as those shown in case of 

increasing r, in case of increasing the recovery rate, that 

means increasing m as shown in the following figures: 

 

 

 

 
Figure 7: The trajectories of system (1), we use, A=500, 

 =0.001, 1 =0.0001, 2 =0.0001,  =0.01, 1 =0.1, 

2 =0.3, r=0.05, v=2, w=0.1, K=5,  =0.01, with (a) 

m=2, (b) m=3, (c) m=7. 
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