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1. Introduction: 

A function ivuf   is a continuous and a complex 

valued harmonic function in a complex domain C  , ifu  

and so v   are real harmonic in C  in simply connected 

domain CR  , R is domain we can write ghf   

, where  the functions h and g  are analytic functions in 

R  . The function h is called analytic part and the 

function g  is called co- analytic part of the function f  

. A necessary and sufficient condition for f  to be 

locally univalent and sense – preserving in R  is that 

)()( zgzh  in R . See [6] .Now , we denoted by 

)( jRW  the class of functions defined by the following 

form: ghf  , that are harmonic multivalent and 

sense – preserving in the unit disk defined  as following 

 1:  zCzU  . For f  belong to )( jRW we 

may express the functions h  and g as following: 
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So , for 0,  Nj  , the differential operator is defined 

as following : 

)()()( 111 zgDzhDzfD jnpnjn   
 .                 (2)                                                                                   

When 1j , 
nD denoted  of operator introduced by  

[ 6 ]. Also denote 

)(* jRW the subclass of )( jRW  consisting of all the 

functions ghf   

where h   and g defined as : 
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Where  
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 Now , the multiplier transformation ),( rI j   
defined as 

following : 

)(),()(),()(),( zgrIzhrIzfrI jjj    .            (7)                                                                          

Where  
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So , from (2) and (7) , the Hadmard product defined as 

following : 
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And  
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where 
rr jcjcnjcn ),,(),,(),,,(     ,                    (14)                                                                                  

Now , we denote by )¥,,(£ æ,,

,0 jrn

  the class of all functions 

defined in (1) such that satisfies the following condition : 
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where  
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0.æ,0,0,0,0¥,¥20  r  

We note that  

£,)1,0,1(£ £

0,0,0

0,0   HS studied by Silverman [ 9], 

£),(£)1,0,1(£ 0,0,0

0,  H
studied by Yalsin and Ӧztürk   

[ 13 ], 

 ),()1,,1(£ £

0,0,0

0,0 N class studied by Ahuja and 

Jahangiry [ 1 ], 

£,£)1,0,1(£ 0,0,

0,  Hnn


class studied by authors in [7], 

£,,),,(£)1,,(£ 0,0,

0,  Hjpjj nn 
class 

studied by ALshaqsi and Darus in [11]. 

Also we see that for the analytic part the class 

æ,¥,,),¥,,(£ æ,,

,0    jpjrn

  
was studied 

by Goel and Sohi [8]. 

And so the operator ),( rI j
was studied by Tehranchin and 

Kulkarni  [12] , Atshan  

[ 2 ], N. E. Cho and T. H. Kim [4], N.E. Cho and Srivastava 

[5], Saurabh Porwal [ 10]  , J. J. Bhamar and S. M. Khairnar 

[ 3 ]. 

So ,we denoted by )¥,,(ð æ,,

,0 jrn


 the subclass of 

)¥,,(£ æ,,

,0 jrn


 , where   

)¥,,(£)()¥,,(ð æ,,
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.            (16)                                                                       

2.Cofficients Bounds: 

In the following  theorem , we introduced coefficients 

bounds of a function in  the class )¥,,(£ æ,,

,0 jrn


 . 

Theorem 1:Let ghf   , such that the functions h  and 

g  are defined in (1) . Let  
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Then f is harmonic multivalent sense preserving in U and f

belong to the class ).¥,,(£ æ,,

,0 jrn

  

Proof:  Let 
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We using the fact    )(Re zA  if and only if 

)()( zAjzAj  .  

It suffices to show that  

0)()(  zAjzAj .                             (18)                                                                                     

So , 
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, show that the coefficient 

bound given by (17) is sharp. 

The function of the form (19) are in )¥,,(£ æ,,

,0 jrn

 , because  
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In the next theorem , we show that the  condition (17) is 

also a necessary for functions in the class )¥,,(ð æ,,

,0 jrn


 . 

Theorem 2:Let ghf   where the functions h  and g

are given by (4). Then a function f belong to the class 

)¥,,(ð æ,,

,0 jrn

  
if and only if 
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Proof : The " if " part follows from theorem 1 , upon noting 
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. For the " only if " part , 

assume that f  belong to the class )¥,,(ð æ,,
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 , then by 

(15) , we get  
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to be real and so ææ   

and letting
 

1z  , we get required result . 

In the following  theorem , we obtain distortion bounds 

for the functions in the class   )¥,,(ð æ,,

,0 jrn
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Corollary :  If )¥,,(ð æ,,

,0  jf rn

  
. Then 

 
 

 
      r

cc

jc

jcncjjcc

j

ba

),,,(1æ¥1

¥2

 







                (21)                                  

Theorem 3:  Let f belong  the class  )¥,,(ð æ,,
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  and

1 rz  , then  

 
  1æ¥

¥2
)1()( 11






jj
rrazf jj

j



   

And  

 
  1æ¥

¥2
)1()( 11






jj
rrazf jj

j



   

.

 
 

Proof: 

Let )¥,,(ð æ,,

,0  jf rn

  
, so we have

 

 

 cc

jc

jj

j barrazf  




11)1()(

   

Then ,       

 

 
  1æ¥

¥2
)1()( 11






jj
rrazf jj

j



   

And so , by similarity we have  

 
  1æ¥

¥2
)1()( 11






jj
rrazf jj

j



  
3. Extreme points: 

In this section , we shall obtain extreme points for the 

class )¥,,(ð æ,,

,0 jrn


 . 
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In particular , the extreme points of )¥,,(ð æ,,

,0 jrn


are 
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We can write )(zf  as following  
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Then from theorem 1 , we have  
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Conversely , let f belong to the class )¥,,(ð æ,,
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So the proof is complete. 
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