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Abstract: Let G a finite group and X a subset of G. The local fusion 

graph denoted by Ƒ(G,X) has a vertex set X with two distinct 

element x≠y X are adjacent if the group generated by x and y, 

<x,y>,  is dihedral group, of order 2n, n odd. In this paper we prove 

that the local fusion graphs for Mathieu groups and their 

Automorphism groups has diameter 2. 
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1. Introduction 

Recently, the study of the action of the group on graph has 

been shown to be effective when studying properties of a 

group. Suppose that G a group with finite order and X class 

of involution in G, the local fusion graph denoted by Ƒ(G,X) 

has a vertex set X with two  distinct vertices  are connected if 

the group generated by x and y, <x,y>, is dihedral group of 

order 2n, n odd, so  x conjugate to y in <x,y>.  Studying the  

structure  of groups by using the associated local fusion 

graphs can be seen  in [1]–[3] where X taken to be a 

conjugacy class of involution. This paper deal with local 

fusion graphs computationally , the computer algebra 

systems Magma [4] and GAP [5] have been employed for 

this purpose. Also,  the group representation which define in 

Magma and GAP can be obtained from the online Atlas of 

Group Representations [6]. One can show immediately that 

G induces graph automorphisms  on the local fusion graph 

Ƒ(G,X)  (by conjugation) and acts transitively on the  graph 

vertices.  For distinct x, y  X, a distance between x and y, 

d(x,y), is a shortest path between x and y. Also the i
th

 disc of 

the element x X, i(x), is the set of vertices of Ƒ(G,X)  

which has distance i from x, also, we may let Diam(Ƒ(G,X))  

to be the diameter of Ƒ(G,X) . Let x   G the Centralizer  

( the set of elements in G commute with x) in G of x  Gx (= 

CG(x)).  Clearly , i(x) equal a union of certain CG(x) -orbits. 

Finally, we should mentioned that the notations of this 

groups from Atlas [7]. The main goal of this paper is to 

investigate  the local fusion graphs for Mathieu groups and 

their Automorphism  and we prove computationally  both 

graphs have diameter 2. 

2. Main Results 

In the 19th century Emile Mathieu discovered the Mathieu 

groups which are the first family of sporadic simple groups 

(see [8], [9]). 

In this paper we study  the local fusion graph for the 

following groups: 

 2.M12.2  for the class 2D ( class of elements of 

order 2) with size 1584.  

 2.M22.2  for the class 2F ( class of elements of 

order 2)  with size 2772. 

As the rest of the classes divide into different classes with 

isomorphic local fusion graph see [10]. Let t be a fixed 

involution ( element of order 2) in either 2D or 2F. Since the 

center of the above groups is cyclic group of order 2, 

generated by involution say , then by [6] one can see that t 

 t
G
. Thus for any involution  t

G
, the element t has even 

order in G.  For that reason we assume that X=2D\{t} or 

X=2F\{t}. Magma can provide a code to find the  

permutation rank of CG(t) on 2D or 2F which  is equal to the 

number of CG(t)-orbits under the action on 2D or 2F by 

conjugation, and  this for the case 2D and 2F is 27 and  28, 

respectively. 

Let C be a Conjugate class in G so that( C={xcx
-1

|x G, c 

C}=c
G
) , then  the set XC defined to be the set of all element 

x  X, such that txX. Obviously, CG(t) breaks up  into 

suborbits by its action on XC, C all over the classes of G. And 

by [11] the following formula gives us the size of the set XC  

                          (1) 

                                              

Where the sum is over all of the irreducible characters (g) 

of G, for g  G. The previous  formula is calculated by GAP 

using the code “Class Multiplication Coefficient”. 

Thus the size of XC now available computationally. 

Now we explain a procedure to find the i(t)∩XC for the 

above groups. In order to do that we define the following 
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algorithm which aim to find  suborbit representatives. The 

structure of this algorithm summarized as follows : 

 

Algorithm 1.  
Input: G is either 2.M12.2 or 2.M22.2, t involution in 2D or 

2F,respectively;  

i: r −→ Random(t
G
 \{t}) 

ii: set Reps −→ {r} and CR −→ r 
Gt

 . 

iii: for x ∈ t
G
\{t} check if x  CR (symbol for r 

Gt
), then  

iv: CR −→ CR ∪ {x
Gt

}; and Reps −→ Reps ∪ {x}.  

Output: The set of suborbit representatives. 

 

The next result cope with the diameters of the local fusion 

graphs Ƒ(2.M12.2, 2D\{ t}) and Ƒ(2.M22.2, 2F\{ t}). 

 

Theorem 1. The Diameter of local fusion graphs 

Ƒ(2.M12.2, 2D\{ t}) and Ƒ(2.M22.2, 2F\{ t})  equal 2 

 

Proof: We have form the output of Algorithm 1 we find 27 

and 28 representatives for CG(t)-orbits for the graphs  

Ƒ(2.M12.2, 2D\{ t}) and Ƒ(2.M22.2, 2F\{ t}). Furthermore, 

the Magma code “Is Conjugate” is in service to find the 

set of conjugacy classes such that XC≠.  

From that we can get the G-classes such that XC is non-empty 

for both graphs: 

{2ABC,3AB,4A,5B,6ABCD,10A,11A,12A,20A,22}      

 and   {2ADE,3A,4CDF,5A,6ABC,10A,11A,22A}, 

respectively. 

The graph  Ƒ(2.M12.2, 2D\{ t})  has 16 class make  XC≠. 

Obviously, X{3AB,5A,11A}  in the 1(t) and the reminder classes 

cannot be in 1(t) this because they have even order if we 

multiply their representative by t. Now to check the reminder 

classes lie in 2(t) we first find the whole 1(t) and then 

search for a random element y 1(t) and we see that there is 

an element z  in XC such that C is even class with property 

<y,z> is dihedral group of order 2n, n odd.  

Thus: 

                      Diam (Ƒ(2.M12.2, 2D\{ t})) =2.  

Similar approach could be utilized to prove that: 

                     Diam (Ƒ(2.M22.2, 2F\{ t})) =2                        

. 

The proof of Theorem 1 computationally can be explained as 

follows: 

1. Use the magma code “Is Conjugate” break up 

the set XC into the non-empty classes. 

2. 1(t) representative is the one in XC such that C is 

odd call this set of representative by SubRep. Then 

3. 1(t)= . 

4. The reminder class named by RemSubRep 

5. For y in  -1(t)  there is an element x in RemSubRep 

such that yx has odd order. 

6. 2(t)= . 

 

The structure of the local fusion graphs Ƒ(2.M12.2, 2D\{ t}) 

and Ƒ(2.M22.2, 2F\{ t}) are described in the next result. 

 

Theorem 2 The discs structural  of local fusion graphs 

Ƒ(2.M12.2, 2D\{ t}) and Ƒ(2.M22.2, 2F\{ t}) can be explain 

in the following tables: 

       

              Table1  Ƒ(2.M12.2, 2D\{ t}) 

 
XC G-

conjugacy 

Classes 

1(t) 2(t) 

3A 20,20  

3B 60  

5A 60,60  

11A 120,120  

2BC  15 

4A  30,2 

6A  20,20 

6B  20 

6CD  60,60 

10A  60,60 

12A  120 

20A  120,120 

22A  120,120 

 

             Table 2  Ƒ(2.M22.2, 2F\{ t}) 

 
XC 

G-conjugacy 

Classes 

1(t) 2(t) 

3A 40,40  

5A 160,160  

11A 320,320  

2DE  5,20 

4CD  80 

4F  40,40,40,40 

6A  40,40 

6BC  80,80 

10A  160,160 

22A  320,320 

  

 

Proof:  Theorem 1 shows that the diameters for both graphs 

are equal 2.  Also, the Gap code “Class Multiplication 

Coefficient” may apply to find the sizes of XC,  which break 

up to suborbits. To calculate the size of arbitrary  suborbits 

say x XC we divide the |CG(t)| by |CCG(t)(x)| which can be 

done by using the magma code      

                      “Order(Centraliser(G,t)/             

                 Centraliser(Centraliser(G,t),x))”.                    

3. The Collapsed Adjacency Matrices 

For a given two CG(t)-orbits, say i, j the collapsed 

adjacency matrix for the local fusion graph Ƒ(G,X) has entry, 

represent the number of the edges in the orbit  j that are 

connected to a single vertex in the orbit i. In the following 

matrices we  change each orbit in Table 1 and Table 2 with 

) Increasingly, also we let )=t . The next tables 3,4 
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presents the collapsed adjacency matrix for the local fusion 

graph Ƒ(G,X), such that Table 3 gives the details for the 

graph  Ƒ(2.M12.2, 2D\{ t}), whereas Table 4   provides the 

information for the graph Ƒ(2.M22.2, 2F\{ t}): 

 

 

Table3:  The Collapsed Adjacency Matrices for Ƒ(2.M12.2, 2D\{ t}) 

 

 

 

 

 
 

 

 

 

 

Class 
                          

 
0 20 20 60 60 60 120 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
20 17 0 18 30 24 60 18 9 0 1 9 10 0 18 24 12 30 6 6 12 36 36 36 18 30 

 
20 0 17 18 30 24 18 60 9 0 1 9 0 10 18 12 24 6 30 6 12 36 36 36 30 18 

 
60 6 6 20 15 19 30 30 0 6 0 8 6 6 24 14 14 20 20 24 12 36 36 28 40 40 

 
60 10 10 15 24 23 42 42 8 6 0 8 2 2 24 18 18 14 14 8 16 32 36 36 26 26 

 
60 8 8 19 23 28 36 36 4 2 0 8 4 4 12 16 16 18 18 16 16 36 28 36 34 34 

 
12

0 

10 3 15 21 18 40 28 5 4 1 9 5 3 20 17 17 24 18 13 17 34 35 35 28 40 

 
12

0 

3 10 15 21 18 28 40 5 4 1 9 3 5 20 17 17 18 24 13 17 34 35 35 40 28 

 
15 12 12 0 32 16 40 40 13 0 0 0 0 0 24 12 12 28 28 24 8 32 32 32 32 32 

 
15 0 0 24 24 8 32 32 0 13 0 0 12 12 0 28 28 12 12 32 16 32 32 32 40 40 

 
30 10 10 0 0 0 60 60 0 0 1 0 10 10 0 0 0 0 0 0 0 60 60 60 60 60 

 
2 6 6 16 16 16 36 36 0 0 0 13 6 6 16 20 20 20 20 16 16 56 24 24 36 36 

 
20 10 0 18 6 12 30 18 0 9 1 9 17 0 18 30 6 24 12 30 24 36 36 36 18 60 

 
20 0 10 18 6 12 18 30 0 9 1 9 0 17 18 6 30 12 24 30 24 36 36 36 60 18 

 
20 6 6 24 24 12 40 40 6 0 0 8 6 6 20 20 20 14 14 15 19 36 36 28 30 30 

 
0 8 4 14 18 16 34 34 3 7 0 10 10 2 20 19 16 18 12 14 18 32 34 34 36 48 

 
0 4 8 14 18 16 34 34 3 7 0 10 2 10 20 16 19 12 18 14 18 32 34 34 48 36 

 
0 10 2 20 14 18 48 36 7 3 0 10 8 4 14 18 12 19 16 18 16 32 34 34 34 34 

 
0 2 10 20 14 18 36 48 7 3 0 10 4 8 14 12 18 16 19 18 16 32 34 34 34 34 

 
0 2 2 24 8 16 26 26 6 8 0 8 10 10 15 14 14 18 18 24 23 32 36 36 42 42 

 
0 4 4 12 16 16 34 34 2 4 0 8 8 8 19 18 18 16 16 23 28 36 28 36 36 36 

 
0 6 6 18 16 18 34 34 4 4 1 14 6 6 18 16 16 16 16 16 18 32 39 39 34 34 

 
0 6 6 18 18 14 35 35 4 4 1 6 6 6 18 17 17 17 17 18 14 39 44 31 35 35 

 
0 6 6 14 18 18 35 35 4 4 1 6 6 6 14 17 17 17 17 18 18 39 31 44 35 35 

 
0 3 5 20 13 17 28 40 4 5 1 9 3 10 15 18 24 17 17 21 18 34 35 35 40 28 

 
0 5 3 20 13 17 40 28 4 5 1 9 10 3 15 24 18 17 17 21 18 34 35 35 28 40 
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Table 4 : The Collapsed Adjacency Matrices for Ƒ(2.M22.2, 2F\{ t}) 

 

 

Conclusion: A good deal of researches have been 

achieved during this paper. For example, the disc 

structure of certain local fusion graphs were 

determined. Moreover, calculating the diameters of 

these graphs is the most notable of what has been 

achieved . Also, the collapsed adjacency matrix for 

the local fusion graphs has been accomplished. 

Finally, computational approaches were most 

applied for analyzing the  aforementioned local 

fusion graphs. 
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