ON ESSENTIAL (T-SMALL) SUBMODULES

Firas sh. Fandi¹, Sahira M. Yaseen²

¹ Mathematics Department College Education for Pure Science, University of Anbar, Iraq

Frisshker1978@gmail.com

² Mathematics Department College of Science University of Baghdad, Iraq,

Sahira.mahmood@gmail.com

Abstract: Let M be an R-module and T be a submodule of M. A submodule K of M is called ET-small submodule of M(denoted by $K \ll_{ET} M$), if for any essential submodule X of M such that $T \subseteq K + X$ implies that $T \subseteq X$. We study this mentioned definition and we give many properties related with this type of submodules.

Keywords:T-small submodule, T-maximal submodule, T-Radical submodule, ET-small submodule, ET-maximal submodule, ET- Radical submodule.

1. Introduction

Throughout this paper R is a commutative ring with identity and M a unitary R-module. A proper submodule N of M is called small (N \ll M), if for any submodule K of M (K \leq M) such that K + N = M implies that N = M. A submodule N of M is essential (K \leq_{e} M) if K \cap L= 0, then L= 0, for every L \leq M [1]. A submodule N of M is closed (N \leq_{e} M) if N has no proper essential extensions inside M that is, if the only solution of the relation N \leq_{e} K \leq_{e} M is N=K[2]. The submodule N of M is called an essential-small (N \ll_{e} M) submodule of M, if for every essential submodule T of M such that M = N + T implies T = M [3].

In [4] the authors introduced the concept of small submodule with respect to an arbitrary submodul ,that a submodule K of M is called T-small in M , denoted by K \ll T M , in case for any submodule X of M, such that T \subseteq K+X, implies that T \subseteq X.

In this work we introduce essential T-small (ET-small) submodule, where an R-module M and T be a submodule of M. A submodule K of M is called ET-small submodule of M (denoted by $K \ll_{ET} M$), if for any essential submodule X of M such that $T \subseteq K+X$ implies that $T \subseteq X$. In the first section, we give the fundamental properties of of ET-small submodules, Also we give many relations between ET-small submodule and other kinds of small submodules.

In the second section, we introduce essential T-maximal(ET-maximal) submodules and the essential T-radical (ET-radical) submodules of M denoted by $Rad_{ET}M$, We give the fundamental properties of this concepts.

2. Essential T-small submodule.

Remarks and Examples 2.2:

1. Consider Z_6 as Z-module .Let $T = \{\overline{0}, \overline{3}\}$, $K = \{\overline{0}, \overline{2}, \overline{4}\}$. The only essential submodule of Z_6 is Z_6 if $T \subseteq K + Z_6$, then $T \subseteq Z_6$. Thus $K \ll_{ET} Z_6$.

2.It is clear that Every T-small submodule of M is ET-

small submodule of M but the converse is not true as for the following Consider Z_{24} as Z-module and Let $T=\{\overline{0}, \overline{8}$, $\overline{16}\}$, N=8Z₂₄ the only essential submodule in Z₂₄ are 2Z₂₄, 4Z₂₄ and Z₂₄, T=8Z₂₄ \subseteq 8Z₂₄+2Z₂₄ and 8Z₂₄ \subseteq 2Z₂₄ ,also 8Z₂₄ \subseteq 8Z₂₄+4Z₂₄, 8Z₂₄ \subseteq 4Z₂₄ and 8Z₂₄ \subseteq Z₂₄ Then 8Z₂₄ ET-small submodule of Z₂₄ which is not T-small submodule of Z₂₄ since 8Z₂₄ \subseteq 8Z₂₄+3Z₂₄but8Z₂₄ \notin 3Z₂₄.

3. Let M be an R- module and T=0.Then every essential submodule of M is ET-small in M.

4. Let M be an R-module and T=M .Then $N \ll_{ET} M$ if and only if $N \ll_{e} M$.

Proposition 2.3: Let M be an R-module and let T,H and L be submodules of M such that $T \le N$ and $H \le N \le M$ and $N \ll_e M$. If $H \ll_{ET} M$, then $H \ll_{ET} N$.

Proof: Let H be ET-submodules of M and X be an essential submodule of N such that $T \subseteq H+X$.since $X \leq_e N$ and $N \leq_e M$ so $X \leq_e M[2]$, then $H \ll_{ET} M$, and $T \subseteq X$.

 $\label{eq:proposition 2.4:} \begin{array}{ll} \text{Let } M \text{ be an } R\text{-module with submodules} \\ N \leq H \leq M \text{ such that } T \leq H \text{ .If } N \ll_{\text{ET}} H \text{, then } N \ll_{\text{ET}} M. \end{array}$

Proof: Suppose that $T \subseteq N+X$, for any essential submodule X of M .Since $T \subseteq H$, then $T=T \cap H \subseteq (N+X) \cap H=N+(X \cap H)$ by modular law, since $X \leq_e M$ and $H \leq_e H$, then $(X \cap H) \leq_e (M \cap H) =H$ [2], and $N \ll_{ET} H$, then $T \subseteq X$. Thus $N \ll_{ET} M$.

Proposition 2.5: Let M be an R-module and Let T, N₁ and N₂ be a submodules of M, Then $N_1 \ll_{ET} M$ and $N_2 \ll_{ET} M$ if and only if $N_1 + N_2 \ll_{ET} M$.

Proof: Suppose that $N_1 \ll_{ET} M$ and $N_2 \ll_{ET} M$ and Let $T \subseteq (N_1+N_2)+X$, for any essential submodule X of M, then $T \subseteq N_1+(N_2+X)$, since $X \leq_e M$ and $N_2 \leq_e N_2$, then $N_2+X \leq_e M$ [2] and $N_1 \ll_{ET} M$ Then $T \subseteq N_2+X$, since $N_2 \ll_{ET} M$ Then $T \subseteq X$. Conversely, let $N_1+N_2 \ll_{ET} M$, to show that $N_1 \ll_{ET} M$ and $N_2 \ll_{ET} M$, Suppose that $T \subseteq N_1 + X$, for any essential submodule X of M, since $N_1 \subseteq N_1+N_2$, so $T \subseteq N_1+N_2+X$, but $N_1+N_2 \ll_{ET} M$, so $T \subseteq X$, thus $N_1 \ll_{ET} M$, and the same we have $N_2 \ll_{ET} M$.

Proposition 2.6:Let M be an R-module and Let H be a submodule of M .If $\{T_i\}_{i \in I}$ be a family set of submodules of M such that $H \ll_{ETi} M$, for each $i \in I$, then $H \ll_{E(\sum_{i \in I} Ti)} M$.

Proof:Let $(\sum_{i \in I} T_i) \subseteq H+X$, for any essential submodule X of M. then for each $i \in I$, $T_i \subseteq H+X$ and by hypothesis $T_i \subseteq X$, thus $(\sum_{i \in I} T_i) \subseteq X$.

Proposition2.7: Let M and N be any R-modules and $f: M \to N$ be a homomorphism .If T and H are submodules of M such that $H \ll_{ET} M$, then $f(H) \ll_{Ef(T)} N$.

Proof: Let $f(T) \neq 0$ and $f(T) \subseteq f(H)+X$, for any essential submodule X of N to show $T \subseteq H + f^{-1}(X)$. let $t \in T$, then t=h+w, for some $h \in H$ and $b \in f^{-1}(X)$. Hence f(t)=f(h+b)=f(h)+f(b). Thus f(t)-f(h)=f(b), thus $f(t-h)=f(b) \in X$ and so($t-h) \in f^{-1}(X)$ implies that $t \in H + f^{-1}(X)$.

¹(X).since $X \leq_e N$ Thus $f^{-1}(X) \leq_e M$ [2] and $H \ll_{ET} M$, therefore $T \subseteq f^{-1}(X)$. Thus $f(T) \subseteq X$.

Proposition 2.8: Let M be an R-module and Let T, H and N be submodules of M such that $\ \ H \leq N \leq M$ and $H \leq$ T. if $N \ll_{ET} M$ then $H \ll_{ET} M$ and $\frac{N}{H} \ll_{E_{T}} \frac{M}{H}$

Proof: Let $N \ll E_{GT} M$.To show that $H \ll_{ET} M$, let $T \subseteq H+X$, for any essential submodule X of M .but $H \leq$ N ≤ M, so T⊆N+X, then T⊆X. Thus H≪_{ET} M. Now to show that $\frac{N}{H} \ll_{E} \frac{T}{H} \frac{M}{H}$, let $\frac{T}{H} \subseteq \frac{N}{H} + \frac{X}{H}$, for any essential submodule $\frac{X}{H}$ of $\frac{M}{H}$ such that H⊆X. Then $\frac{T}{H} \subseteq \frac{N+X}{H}$ so T⊆N+X, Since $\frac{X}{H} \leq_{e} \frac{M}{H}$ then X ≤_e M [3], and N≪_{ET} M, then T⊆X Thus $\frac{T}{H} \subseteq \frac{X}{H}$.

Proposition2.9: Let M be an R-module and Let T, H and N be submodules of M such that $H \le N \le M$ and $H \le T$ and $H \le_c M$, if $\frac{N}{H} \ll_{E_{T}} \frac{M}{H}$ then $N \ll_{ET} M$.

Proof: Let $H \ll_{ET} M$ and $\frac{N}{H} \ll_{E} \frac{T}{R} \frac{M}{H}$, to show that $N \ll_{ET}$ M, let $T \subseteq N+X$, for any essential submodule X of M and $H \subseteq X$. Now $\frac{T}{H} \subseteq \frac{N+X}{H} = \frac{N}{H} + \frac{X}{H}$, since $X \leq_e M$ and H $\leq_c M$ then $\frac{X}{H} \leq_e \frac{M}{H}$ [3]. But $\frac{N}{H} \ll_{\overline{E}} \frac{T}{H} \frac{M}{H}$, so $\frac{T}{H} \subseteq \frac{X}{H}$ implies

that $T \subseteq X$.thus $N \ll_{ET} M$.

Corollary2.10: Let M be an R-module and Let K and H be submodules of M such that $K \ll_{EH} M$ and $H \ll_{EK} M$. Then $(H\cap K) \ll_{E(K+H)} M.$

Proof: Let $K \ll_{EH} M$ and $H \ll_{EK} M$, since $(H \cap K) \le H$ and $(H \cap K) \leq K$, by Proposition (1.4), $(H \cap K) \ll_{EK} M$ and $(H \cap K) \ll_{EH} M$. Also by Proposition (1.6) we get $(H \cap K)$ $\ll_{E(K+H)} M.$

Proposition 2.11:Let M be an R-module and Let T, K ,H and B be submodules of M such that $K \le H \le B \le M$, $K \le_c M$ and $H \le_c M$. Then $\frac{B}{R} \ll_{E(\frac{T+K}{K})} \frac{M}{R}$ if and only if $\frac{B}{H}$ $\ll_{E(\frac{T+H}{H})} \frac{M}{H}$ and $\frac{H}{R} \ll_{E(\frac{T+K}{K})} \frac{M}{R}$.

Proof: Let $\frac{B}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$. To show that $\frac{B}{H} \ll_{E(\frac{T+H}{K})} \frac{M}{H}$, let $\frac{T+H}{H} \subseteq \frac{B}{H} + \frac{X}{H} = \frac{B+X}{H}, \text{ for any essential submodule } \frac{X}{H} \text{ of } \frac{H}{H}$ and $H \subseteq X$. Hence $T \subseteq T + H \subseteq B + X$. So $\frac{T + K}{K} \subseteq$ Therefore $\frac{T+K}{K} \subseteq \frac{B}{K} + \frac{X}{K}$ since $X \leq_e M$ and $K \leq_c M$ then $\frac{X}{K} \leq_e M$ $\frac{M}{K}$ [3] But $\frac{B}{K} \ll_E \frac{T+K}{K} = \frac{M}{K}$, therefore $\frac{T+K}{K} \subseteq \frac{X}{K}$. So $\frac{1}{K} = \frac{1}{K} = \frac{1}$ and hence $T \subseteq T + K \subseteq H + K \subseteq B + K$ implies that $\frac{T + K}{K} \subseteq \frac{K}{K}$ $= \frac{B}{K} + \frac{X}{K}$, Since $\frac{B}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$, then $\frac{T+K}{K} \subseteq \frac{X}{K}$. Thus $\frac{H}{K}$ $\ll_{E(\frac{T+K}{K})} \frac{M}{K}$. Conversely, let $\frac{B}{H} \ll_{E(\frac{T+H}{H})} \frac{M}{H}$ and $\frac{H}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$. To shows that $\frac{B}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$. Let $\frac{T+K}{K} \subseteq \frac{B}{K} + \frac{X}{K}$, for any essential submodule $\frac{X}{K}$ of $\frac{M}{K}$. Then $\frac{T+K}{K} \subseteq \frac{B+X}{K}$ and hence $T \subseteq T + K \subseteq B + X$ so $T + K \subseteq B + X + K$ implies that $\frac{T+H}{K} \subseteq C$. $T \subseteq T + K \subseteq B + X \text{ .so } T + H \subseteq B + X + H \text{ implies that } \frac{T + H}{H} \subseteq \frac{B + X + H}{H} = \frac{B + X}{H} \text{. therefore } \frac{T + H}{H} \subseteq \frac{B}{H} + \frac{X}{H} \text{, since } X \leq_{e} M \text{ and } X \leq_{e} M \text{ and } X = \frac{B}{H} + \frac{X}{H} \text{, since } X \leq_{e} M \text{ and } X = \frac{B}{H} + \frac{X}{H} \text{, since } X \leq_{e} M \text{ and } X = \frac{B}{H} + \frac{X}{H} \text{, since } X \leq_{e} M \text{ and } X = \frac{B}{H} + \frac{X}{H} \text{, since } X = \frac{B}{H} + \frac{B}{H} \frac{B}{H$

 $H \leq_c M$ then $\frac{X}{H} \leq_e \frac{M}{H}$ [3] and $\frac{B}{H} \ll_{E(\frac{T+H}{H})} \frac{M}{H}$, therefore $\frac{T+H}{H}$ $\subseteq \frac{X}{2}$. Then T+H \subseteq X But T+ k \subseteq T+H and X \subseteq X+H, $so ^{T} T+k \subseteq T+H \subseteq X \subseteq X+H \text{ therefore } T+k \subseteq X+H, \text{ so}$ $\frac{T+\kappa}{\kappa} \subseteq \frac{X+H}{\kappa} = \frac{X}{\kappa} + \frac{H}{\kappa}, \text{ since } X \leq_{e} M \text{ and } K \leq_{c} M \text{ then } \frac{X}{\kappa} \leq_{e}$ $\frac{M}{\kappa} \text{ and } \frac{H}{\kappa} \ll_{\mathcal{E}}(\frac{T+\kappa}{\kappa}) \frac{M}{\kappa} \text{ then } \frac{T+\kappa}{\kappa} \subseteq \frac{X}{\kappa} \text{ Thus } \frac{B}{\kappa} \ll_{\mathcal{E}}(\frac{T+\kappa}{\kappa}) \frac{M}{\kappa}.$

Proposition2.12: Let $M=M_1 \bigoplus M_2$ be an R-module such that R=Ann (M₁)+Ann (M₂) . If N₁ \ll_{ET1} M₁ and N₂ \ll_{ET2} M₂, then N₁ \oplus N₂ $\ll_{E(T_1} \oplus_{T_2)}M$.

Proof: Let $T_1 \oplus T_2 \subseteq N_1 \oplus N_2 + X$, for any essential submodule X of M .Since $R=Ann(M_1)+Ann(M_2)$.Then, by the same argument of the prove of [6, prop. 4.2, ch 1] $X = X_1 \bigoplus X_2$, for any essential submodule X_1 of M_1 and submodule X_2 of M_2 . Hence $T_1 \oplus T_2 \subseteq N_1 \oplus N_2 + X_1 \oplus X_2$, implies that $T_1 \bigoplus T_2 \subseteq (N_1 + X_1) \bigoplus (N_2 + X_2)$.to show that $T_1 \subseteq N_1 + X_1$ and $T_2 \subseteq N_2 + X_2$ let $t_1 \in T_1$ and $t_2 \in T_2$ then $t_1+t_2 \in T_1 \oplus T_2 \subseteq (N_1+X_1) \oplus (N_2+X_2)$, so $t_1 \in (N_1+X_1)$ and $t_1 \in (N_2+X_2)$, then $T_1 \subseteq N_1+X_1$ and $T_2 \subseteq N_2+X_2$, Since $N_1 \ll_{ET1} M_1$ and $N_2 \ll_{ET2} M_2$, then $T_1 \subseteq X_1$ and $T_2 \subseteq X_2$ and hence $T_1 \oplus T_2 \subseteq X_1 \oplus X_2 = X$. Thus $N_1 \oplus N_2 \ll_{E(T_1 \oplus T_2)} M$.

Recall that an R-module M is called a fully stable module if for each submodule K of M and for each Rhomomorphism f from M into K, $f(K) \subseteq K$ [5].

Proposition2.13: Let $M = \bigoplus_{i \in I} M_i$ be a fully stable module .If $K_i \ll_{E(Ti)}$ M_i, for each $i \in \mathbb{L}$ then $\bigoplus_{i \in I} K_i \ll_{E(\bigoplus_{i \in I} T_i)} \bigoplus_{i \in I} M_i$.

Proof: Let $M = \bigoplus_{i \in I} M_i$ be a fully stable module and $K_i \ll$ for each *i*∈I .To E(Ti) M_i , show that $\bigoplus_{i \in I} K_i \ll_{\mathcal{E}(\bigoplus_{i \in I} T_i)} \bigoplus_{i \in I} M_i$.Let $(\bigoplus_{i \in I} T_i) \subseteq (\bigoplus_{i \in I} K_i) + X$, for any essential submodule X of M .Claim that $X = \bigoplus_{i \in I} (X \cap M_i)$. To show that, for each $i \in I$ let $P_i : M \to I$ M_i be The projection map and let $x \in X$, then $x \in \bigoplus_{i \in I} M_i$ and hence $x = \sum_{i \in I} x_i$ where $x_i \in M_i$, $\forall i \in I$ and $x_i \neq 0$ for at most a finite number of $i \in I$. Since M is fully stable, then $Pi(x) \in X, \forall i \in I$. Now $\underline{P}_i(x) = P_i(\sum_{i \in I} x_i) = x_i \in (X)$ \cap Mi) and hence $x = (\sum_{i \in I} x_i) \in \bigoplus_{i \in I} (X \cap M_i)$. Thus $X \subseteq \bigoplus_{i \in I} (X \cap M_i)$.Clearly $\bigoplus_{i \in I} (X \cap M_i) \subseteq X$.Thus K = $\bigoplus_{i \in I} (K \cap M_i) \quad .\text{Now} \bigoplus_{i \in I} T \subseteq (\bigoplus_{i \in I} K_i) + (\bigoplus_{i \in I} (X \cap M_i))$ $= \bigoplus_{i \in I} (K_i + (X \cap M_i))$. Therefore $T_i \subseteq K_i + (X \cap M_i)$, for each $i \in I$.Since $K_i \ll_{E(Ti)} M_i$,then $Ti \subseteq (X \cap Mi)$ and hence $\bigoplus_{i \in I} T \subseteq \bigoplus_{i \in I} (X \cap M_i) = X$. thus $\bigoplus_{i \in I} K_i \ll_{\mathcal{E}(\bigoplus_{i \in I} T_i)} \bigoplus_{i \in I} M_i$ Recall that the annihilator of M $Ann(M) = \{r \in R \mid rM =$

0} [6], M is a faithful module if Ann(M) = 0. M is a multiplication module if for each submodule N of M, there exists an ideal I of R such that N=IM [7].

Proposition2.14: Let M be a finitely generated, faithful and multiplication module and let I, J be ideals in R .Then $I \ll_{EJ} R$ if and only if $IM \ll_{E(JM)} M$.

Proof: Let $I \ll_{EJ} R$.To show that $IM \ll_{E(JM)} M$.Let JM⊆IM+X, for any essential submodule X of M .Since M is multiplication module, then X=KM, for some ideal K of R and hence $JM\subseteq IM+KM=(I+K)M$.since M be a finitely generated, faithful and multiplication module, therefore M is a cancellation module, by [9] .then $J \subseteq I+K$ $K \leq_e R$.Since $I \ll_{EJ} R$,then $J \subseteq K$.Hence since JM \subseteq KM=X .Thus IM $\ll_{E(JM)}$ M. Conversely, let IM $\ll_{E(JM)}$ M .To show that $I \ll_{\scriptscriptstyle{EJ}} R$.Let K be essential ideal of R such that $J \subseteq I+K$. Since M is multiplication module, then

JM⊆IM+KM .But IM $\ll_{E(JM)}$ M, therefore JM⊆KM .So J⊆K .Thus I \ll_{EJ} R.

3. Essential T-Radical of M.Recall that if M an Rmodule and T be a submodule of M. A submodule K of M is called T-maximal submodule of M if is $\frac{T+K}{K}$ simple

[4]. In this section, we introduce the definitions of ETmaximal submodules and ET-radical of a module as a generalization of T-maximal submodules and T-radical of a module and we discuss some of the basic properties of this concepts.

Definition 3.1: Let M be an R-module and let T be a submodule of M. An essential submodule K of M is called essential T-maximal(ET-maximal) submodule of M if $\frac{T+K}{K}$ is simple.

Remarks and examples 3.2:

1.If M is a unform R-module M and let K be a submodule of a module M, then K is ET-maximal submodule of M if and only if K is T- maximal submodule of M.

2. If T a submodule of M then every ET-maximal submodule of M is T- maximal submodule of M but the converse is not true as the following example.

Consider Z₆ as Z-module .Let $T = \{\overline{0}, \overline{2}, \overline{4}\}$ and $K = \{\overline{0}, \overline{3}\}$. Then K is T-maximal submodule of Z₆, where $(\overline{0}, \overline{2}, \overline{4}) + (\overline{0}, \overline{3}) = \frac{Z_6}{(\overline{0}, \overline{3})} \cong \{\overline{0}, \overline{2}, \overline{4}\}$ is simple, but K is not ET-

maximal submodule of Z_6 , since K is not essential submodule of Z_6 .

Since every ET-maximal submodule of M is T-maximal submodule .The following we get without prove since the prove is as the same way on [4], [8]

Proposition 3.3:Let M be an R-module and $(0 \neq T)$ be a proper finitely generated submodule of M and let

 $A = \{L \le M \mid L \ll_{ET} M \text{ and } L+K \subseteq T +K, \text{ for all ET-maximal submodule } K \text{ of } M\} \text{ and }$

B = {K \leq M | K is an ET-maximal submodule of M}. Then $\sum_{L \in A} L = \bigcap_{K \in B} K$.

Proposition 3.4: Let M be an R-module and be a finitely generated submodule of M and $a \in M$ Then Ra is not ET-small submodule of M if and only if there exists H is ET-maximal submodule of M such that $a \notin H$ and $T \subseteq Ra + H$.

Proposition 3.5:Let M and N be an R-modules and $f: M \rightarrow N$ be an R-homomorphism. If T is a submodule of M and K is an ET-maximal submodule of M such that kerf $\subseteq K$, then f(K) also is an Ef(T)-maximal submodule of N.

Proposition 3.6: Let M and N be an R-modules and $f: M \rightarrow N$ be an R- epimorphism . If T is a submodule of M and K is an Ef(T)-maximal submodule of N, then $f^{-1}(K)$ also is an ET-maximal submodule of M.

Proposition 3.7: Let H and T be submodules of a module M such that T is finitely generated and $T \nsubseteq H$. Then there exists a ET-maximal submodule of M containing H.

Definition 3.8: Let M be an R – module the intersection of all essential T-maximal submodules of M is called a essential T-Radical of M (denoted by $Rad_{ET}(M)$). If M has no ET-maximal submodule , then $Rad_{ET}(M) = T$.

Remarks and Examples 3.9:

1. If M be an uniform R-module then $Rad_{ET}(M) = Rad_T(M)$.

2.If.T=M.then. $Rad_{ET}(M)$ = $Rad_{e}(M)$.

3.Consider Z_6 as Z-module .Let $T=Z_6$ and $K_1 = Z_6$ are

ET-maximal submodules of Z_6 , therefore $Rad_{GT}(Z_6) = Z_6$

4. Consider Z_4 as Z-module .Let $T = Z_4$ and $K = \{\overline{0}, \overline{2}\}$, then K is the only ET-maximal submodule of Z_4 .To show that, $\overline{(0,2)} \cong \{\overline{0},\overline{2}\}$ is a simple .Thus $Rad_{ET} Z_4 = Rad_T$ $Z_4 = \{\overline{0},\overline{2}\}$. **5.** Consider $Z_p \infty$ as Z-

module .Let $T = Z_p \infty$, then $Z_p \infty$ has no ET-maximal submodule and hence $Rad_{ET}Z_p \infty = Z_p \infty$.

Proposition 3.10: Let M be an R-module and let T be a finitely generated submodule of a module M. Then $Rad_{ET}(M) \ll_{\text{ET}} M$.

Proof: Assume that $T \subseteq Rad_{ET}M + X$, for any essential submodule X of M .to show that $T \subseteq X$ suppose that $T \nsubseteq X$. Then by *Proposition* (2.7), there exists a ET-maximal submodule K of M such that $X \subseteq K$. Therefore $T \subseteq Rad_{ET}M + X \subseteq K$.implies that $T \subseteq K$, so $\frac{T+K}{K} = 0$ which contradicts the T-maximality of K. Thus $T \subseteq X$, Thus $Rad_{ET}(M) \ll_{ET}M$.

Lemma 3.11: Let M be an R- module and let T be a finitely generated submodule of a module M and $m \in M$ such that $R_m+H \subseteq T+H$, for all ET-maximal submodule H of M, then $R_m \ll_{ET} M$ iff $m \in Rad_{ET}(M)$.

Proof: Let $R_m \ll_{ET} M$ and $R_m + H \subseteq T + H$, for all ETmaximal submodule H of M, By Proposition (2.3) then $R_m \in A$, where $A = \{L \le M \mid L \ll_{ET} M$ and $L + H \subseteq T + H$, for all ET-maximal submodule H of M $\}$. Hence $R_m \subseteq Rad_{ET}M$. For the converse, let $m \in Rad_{ET}M$. To show that $R_m \ll_{ET} M$. Suppose that R_m is not ET-small submodule M. By Proposition (2.4), then there exists H is a ETmaximal submodule of M with $m \notin H$ then $m \notin Rad_{ET}M$ which is a contradiction .Thus R_m is a ET-small submodue of M.

Proposition 3.12: Let M and N be an R-modules and f : $M \rightarrow N$ be an R-epimorphism such that Kerf $\subseteq \text{Rad}_{\text{ET}}M$. Then $f(\text{Rad}_{\text{ET}}M) = \text{Rad}_{\text{Ef(T)}}N$.

Proof: Since f is epimorphism, by *Proposition* (2.5) and Proposition(2.6),we,have $f(\operatorname{Rad}_{ET}M) = f(\bigcap_{K \in A} K) = \bigcap_{f(k) \in B} f(K) = \operatorname{Rad}_{Ef(T)}N$, where, $A = \{K \le M \mid K \text{ is an ET-maximal submodule of } M\}$ and $B = \{f(K) \le N \mid f(K) \text{ is an Ef}(T)\text{-maximal submodule of } N\}$. **References**

- F. Kasch, Modules and Rings, *Academic Press*, Inc-London, 1982.
- [2] K.R.Goodearl, Ring Theory, Nonsingular Rings and Modules, *Marcel Dekkel*, 1976.
- [3] X. Zhou and X. R. Zhang, Small-Essential Submodules and Morita Duality, *Southeast*

Asian Bulletin of Mathematics, 35, 1051-1062, 2011.

- [4] Beyranvand, R. and Moradi, F. Small submodules with respect to an arbitrary submodule. *Journal of Algebra and Related Topics*, 3(2): 43-51, 2015.
- [5] M. S. Abass, on fully stable modules, Ph.D. Thesis, University of Baghdad, 1990.
- [6] R. Wisbauer, Foundations of module and ring theory, *Gordon and Breach, Philadelphia*, 1991.
- [7] Z. A. El- Bast and P. F. Smith, Multiplication Modules, *Comm. Algebra*, 16, 755-774, 1988.
- [8] H. S. Al-Redeeni, On (G^{*})T-lifting modules and T-H-supplemented modules, M. Sc. Thesis, University of Baghdad,2017.

SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS-2019