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Abstract: Recovery of time-dependent thermal conductivity has 

been numerically investigated.  The problem of identification in 

one-dimensional heat equation from Cauchy boundary data and 

mass/energy specification has been considered. The inverse 

problem recasted as a nonlinear optimization problem. The 

regularized least-squares functional is minimised through lsqnonlin 

routine from MATLAB to retrieve the unknown coefficient. We 

investigate the stability and accuracy for numerical solution for two 

examples with various noise level and regularization parameter. 
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1. Introduction 

The concept of so-called inverse/backward 

problems have been dominated the research in late twentieth 

century due to wide range of applications; such as in 

engineering, geo- physics, economics and ecology [1].  

During the consideration of inverse problems, the choice of 

overdetermination/additional conditions play an important 

role in the proofing the existence and uniqueness of the 

solution for example see, [2, 3, 4].  

We investigate the numerical reconstruction of time-

dependent thermal conductivity with respect to initial and 

non-homogeneous Dirichlet boundary conditions. Whilst, the 

overdetermination conditions are the energy/mass 

specification and the heat flux difference. 

The organization of the paper as follows. In next section, the 

mathematical formulation and the unique solvability 

conditions are stated. In Section 3, the Crank-Nicolson FDM 

scheme for the direct problem has been presented and 

developed [5]. While, in Section 4 we consider the numerical 

solutions for inverse problems based on finding the quasi-

solution for associated nonlinear optimization problem. 

Section 5, devoted to the numerical results and discussion. 

Finally, the conclusions are highlighted in Section 6.  

 2. Mathematical formulation 

Consider the fixed parameters h > 0 and T > 0 which 

represent the length of a finite slab and time, respectively. 

The solution domain denoted by  

D={(x,t): 0<x<h; 0<t≤T}. 

In this paper, we consider the heat equation of the form  

𝑢𝑡 = 𝑎(𝑡)𝑢𝑥𝑥                    (𝑥, 𝑡) ∈ 𝐷                               (1) 

where a(t) > 0 is coefficient and u(x, t) is the temperature. 

The heat capacity is taken to be unity and therefore the 

coefficient a(t) represent the time-dependent thermal 

conductivity. Equation (1) has to be solved subject to initial 

condition 

 𝑢(𝑥, 0) = 𝜑(𝑥)                   0 ≤ 𝑥 ≤ ℎ                         (2) 

and nonhomogeneous Dirichlet boundary conditions  

𝑢(0, 𝑡) = 𝜇1(𝑡)     𝑢(ℎ, 𝑡) = 𝜇2(𝑡)    0 ≤ 𝑡 ≤ 𝑇         (3) 

If the coefficient a is given the equations (1)–(3) formulate a 

direct Dirichlet problem for finding the unknown 

temperature u(x,t). The outputs of interest which should be 

computed are energy/mass specification  

   ∫ 𝑢(𝑥, 𝑡)𝑑𝑥
ℎ

0
= 𝜇3(𝑡)                       0 ≤ 𝑡 ≤ 𝑇        (4) 

and the difference of heat flux at the ends 

𝑢𝑥(ℎ, 𝑡) − 𝑢𝑥(0, 𝑡) = 𝜇4(𝑡)    0 ≤ 𝑡 ≤ 𝑇                  (5) 

If conductivity coefficient a is unknown, in this case, an 

inverse problem for coefficient identification should be 

solved.  

The problem for identifying the coefficient a(t) has been 

considered in [6] with periodic boundary conditions and 

nonlocal overspecified data. In this paper, the consideration 

has been given to recovery the unknown coefficient under 
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different boundary and overdetermination conditions as in 

equations (4) and (5). The unique solvability theorems for 

theses inverse problems are stated in the next subsections  

2.1 Inverse problem 1 (IP1) 

The IP1 requires determination of thermal conductivity         

a(t) > 0 together with the temperature u(x, t) satisfying the 

equations (1)–(4).  

The unique solvability for IP1 was established in [7]. 

Theorem 1. The inverse problem (1)–(4) is uniquely 

solvable if φ(x) ∈ C
1

 [0, h], μi(t) ∈ C1[0, T ], i = 1, 2, φ′(h − 

x) − φ′(x) ≥ 0  on [0,h/2], μ1
′(t) + μ2

′(t) ≥ 0 on [0, T ] and at 

least one of the functions μ1
′(t) + μ2

′(t) and φ′(h − x) − φ′(x) 

is not identically zero.  

Remark: notice that by differentiating equation (4) with 

respect to t and invoke (1) we have 

𝜇′
3

(𝑡) = ∫ 𝑢𝑡(𝑥, 𝑡)𝑑𝑥 =
ℎ

0
∫ 𝑎(𝑡)𝑢𝑥𝑥(𝑥, 𝑡)𝑑𝑥 

ℎ

0
                 (6) 

after simple manipulation we obtain  

𝑎(𝑡) =
𝜇′

3(𝑡)

𝑢𝑥(ℎ,𝑡)−𝑢𝑥(0,𝑡)
,         0 ≤ 𝑡 ≤ 𝑇,                             (7) 

at 𝑡 = 0 

𝑎(0) =
𝜇′

3(0)

𝜑′(ℎ)−𝜑′(0) 
,                                                            (8) 

provided that 𝜑′(ℎ) − 𝜑′(0) ≠ 0. 

2.2 Inverse problem 2 (IP2)  

The IP2 requires to solve the equations (1)–(3) and (5). Also, 

the unique solvability for IP2 was established in [7] and 

reads as follows. 

Theorem 2. Assume that the following conditions are 

satisfied 

1. μi ∈C1[0,T], i=1,2,4, φ(x) ∈C2[0,h], 

φ(0)+φ(h)=μ1(0)+μ2(0)  and φ′(h)−φ′(0) = μ4(0); 

2. μ′
i(t)>0, i=1,2, μ4(t)≥0 for t∈[0,T], φ′′(x)>0 on 

[0,h].  

Then the inverse problem (1)–(3) and (5) possesses a 

solution. 

Theorem 3. Assume that the functions φ(x) and μ4(t) 

satisfy the conditions  

1. φ(x) ∈ C2[0,h], μ4(t) ∈ C1[0,T], φ′′(x) ≥ 0 on [0,h] 

and μ′
4(t) on [0,T];  

2. at least one of the functions φ′′(x) and μ′
4(t) is not 

identically zero.  

Then the solution of the inverse problem (1)–(3) and (5) is 

unique.  

3. Direct problem  

In this section, consider numerical solution for the direct 

initial boundary value problem given by equation (1)–(3). 

The Finite difference method (FDM) with Crank-Nicolson 

scheme [5], has been employed which is unconditionally 

stable and second-order accurate in space and time. In order 

to employ this scheme, denote u(xi,tj) := ui,j and a(tj) := aj, 

where xi =i∆x and tj=j∆t, φ(xi)=φi,  μk(tj)=μkj,for k=1,2,3,4,  

i=0,M, j=0,N,  ∆x=h/M and ∆t=T/N.  

Considering the heat equation (1), the Crank-Nicolson 

method, discretise (1)–(3) as  

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

Δ𝑡
=

1

2
(𝑎𝑗+1

𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

(Δ𝑥)2

+ 𝑎𝑗

𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

(Δ𝑥)2
) ,

𝑖 = 1, (𝑀 − 1), 𝑗 = 0, (𝑁 − 1)             (9) 

𝑢𝑖,0 = 𝜑(𝑥𝑖), 𝑖 = 0, 𝑀                                       (10) 

𝑢0,𝑗 = 𝜇1(𝑡𝑗), 𝑢𝑀,𝑗 = 𝜇2(𝑡𝑗),      𝑗 = 0, 𝑁.              (11) 

equations (9)–(11) can be discretise in the difference 

equation form  

− Aj+1ui−1,j+1 + (1 + 2Aj+1)ui,j+1 − Aj+1ui−1,j+1                

= Ajui−1,j + (1 − 2Aj)ui,j + Ajui−1,j                          (12) 

for  i=0,M−1,  j =0,N−1 where 𝐴𝑗 = (Δ𝑡)𝑎𝑗/(2(Δ𝑥)2) . At 

each time step 𝑡𝑗+1 for j= 0,N−1 using Dirichlet boundary 

conditions the above difference equation can be expressed as 

(M − 1) × (M − 1) system of linear equations take the form  

𝐶𝑢𝑗+1 = 𝐾𝑢𝑗 + 𝑏 

where uj+1 = (u1,j+1, u2,j+1, ..., uM−1,j+1)T  for   j = 0, N,     

b = (b1, b2, ..., bM−1)T ,  𝐶 and  𝐾 are tridiagonal 

matrices. 

An example, consider the direct problem (1)–(3) with h = T 

= 1, and  

𝜑(𝑥) = 𝑢(𝑥, 0) = exp(𝑥) + cosh(𝑥)                                (13) 

𝜇1(𝑡) = 𝑢(0, 𝑡) = 2exp(𝑡3 + 𝑡)                                         (14) 
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𝜇2(𝑡) = 𝑢(1, 𝑡) = (exp(1) + cosh(1))exp(𝑡3 + 𝑡)      (15) 

 𝑎(𝑡) = 2𝑡2 + 1.                                                                      (16) 

The true solution is given by  

𝑢(𝑥, 𝑡) = (exp(x) + cosh(x))exp(𝑡3 + 𝑡)                        (17) 

Figure 1 present the numerically obtained solution for u(x,t). 

This figure indicates that an excellent agreement with true 

solution.  

 

Figure 1. the exact solution (left), numerical solution (middle), 
absolute error between them (right), for direct problem (1)-(3). 

On the other hand, outputs of interest equations (4) and (5), 

which are analytically given by  

𝜇3(𝑡) = (𝑒 + sinh(1) − 1) exp(𝑡3 + 𝑡) ,   𝑡 ∈ [0,1]       (18) 

𝜇4(𝑡) = (𝑒 + sinh(1) − 1) exp(𝑡3 + 𝑡) ,   𝑡 ∈ [0,1]       (19) 

 

Figure 2. The exact and numerical (left) 𝜇3(t) (right) 𝜇4(t) for 
M=N∈{10,20,40,80} for direct problem. 

Figure 2 explain that the true and numerical solutions for 

equations (4) and (5) are indistinguishable. The true 

solutions are given by equations (18) and (19), whilst the 

approximate results have been computed using the following 

second order finite-difference and trapezoidal rule formula.  

𝜇3(𝑡𝑗) = ∫ 𝑢(𝑥, 𝑡𝑗)𝑑𝑥
1

0

=
1

2𝑁
(𝜇1(𝑡𝑗) + 𝜇2(𝑡𝑗) + 2 ∑ 𝑢𝑖,𝑗

𝑀−1

𝑖=1
) ,

𝑗 = 0, 𝑁                                                     (20) 

𝜇4(𝑡𝑗) =
4𝑢𝑀−1,𝑗 − 𝑢𝑀−2,𝑗 − 3𝜇2(𝑡𝑗)

−2 Δ𝑥

−
4𝑢1,𝑗 − 𝑢2,𝑗 − 3𝜇1(𝑡𝑗)

2 Δ𝑥
, 

                                           𝑗 = 0, 𝑁,                                           (21) 

To measure the accuracy of our numerical results, the root 

means square errors (rmse) between the numerical and the 

exact results for equations (4) and (5) are shown in the Table 

1 which shows the mesh convergence,  

𝑟𝑚𝑠𝑒(𝜇𝑘) = √
1

𝑁
∑ (𝜇𝑘

𝑎𝑝𝑝𝑟𝑜𝑥
− 𝜇𝑘

𝑒𝑥𝑎𝑐𝑡)^2   𝑁
𝑖=1 𝑘 = 3,4    (22) 

Table 1 .The (rmse) given by (22), between the true and numerical 

solution for (4) and (5) for M=N {10,20,40,80} for direct problem 
(1)-(3). 

In this table it can be seen that as M = N increase the rmse 

values decrease indicating the mesh convergence.  

4. Numerical solutions of the inverse problems  

Suppose the coefficient a(t) > 0 is unknown, in this case we 

deal with inverse problem. To solve this, one can look at the 

quasi-solution [8], given by solving the minimization of the 

least-squares gap, for nonlinear ill-posed and inverse 

problem. We employ the Tikhonov regularization method 

based on minimizing the following functional; 

𝐹(𝑎) = ‖∫ 𝑢(𝑥, 𝑡)𝑑𝑥
ℎ

0
− 𝜇3(𝑡)‖

2

+ 𝜆||𝑎||2,                     (23)  

for IP1 and the corresponding functional for IP2 given by  

𝐺(𝑎) = ‖𝑢𝑥(ℎ, 𝑡) − 𝑢𝑥(0, 𝑡) − 𝜇4(𝑡)‖2 + 𝛽||𝑎||2,          (24)  

where u solves (1)–(4) or (1)–(3) and (5), respectively, λ ≥ 0 

and β ≥ 0 are regularization parameters and the norm is 

usually the L2 [0, T ]-norm. The discrete form of the 

functionals (23) and (24) are;  

𝐹(𝒂) = ∑ [∫ 𝑢(𝑥, 𝑡𝑗)𝑑𝑥
ℎ

0
− 𝜇3(𝑡𝑗)]

2
𝑁
𝑗=1 + 𝜆 ∑ 𝑎𝑗

2𝑁
𝑗=1 ,   (25)  

𝐺(𝒂) = ∑[𝑢𝑥(ℎ, 𝑡𝑗) − 𝑢𝑥(0, 𝑡𝑗) − 𝜇4(𝑡𝑗)]
2

𝑁

𝑗=0

+ 𝛽 ∑ 𝑎𝑗
2

𝑁

𝑗=0

,                                                (26) 

Clearly if λ = β = 0, the above equations yield the ordinary 

least-squares methods which is usually produce unstable 

solution for noisy input data. It is worth to mention that, the 

minimization of F or G subject to the physical constraints 

that the thermal conductivity is positive quantity. The 

minimization processes are accomplished using the 

MATLAB routine lsqnonlin from optimization toolbox, [9]. 

This routine based on Trust-Region- Reflection (TRR) to 

find the local minimization of sums of squares functions 

starting from initial guess.  

M=N 10 20 40 80 

rmse(𝜇3) 0.0243 0.0058 0.0014 3.2E-4 

rmse(𝜇4) 0.2340 0.0562 0.0136 0.0033 
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The needed parameters for the routine are taken as follows;  

 Solution Tolerance (xTol)=10−10, 

 Function Tolerance (FunTol)=10−10, 

 Initial guess (a0 = a(0)) for IP1 and IP2, 

The lower bound for a is 10−10 and the upper 

bound is 103.  

5. Results and discussion 

We discuss, in this section, a couple of test examples to 

illustrate the accuracy and stability of the numerical results. 

For simplicity, we take h = T = 1. In addition, we investigate 

the problems for exact and noisy inputs data. We add noise 

to the measured input data (4) and (5) as  

𝜇3
𝑛𝑜𝑖𝑠𝑒(𝑡𝑗) = 𝜇3(𝑡𝑗) + 𝑟𝑎𝑛𝑑𝑜𝑚(′𝑁𝑜𝑟𝑚𝑎𝑙′, 0, 𝜎1, 1, 𝑁),

𝑗 = 1, 𝑁                                              (27) 

𝜇4
𝑛𝑜𝑖𝑠𝑒(𝑡𝑗) = 𝜇4(𝑡𝑗) + 𝑟𝑎𝑛𝑑𝑜𝑚(′𝑁𝑜𝑟𝑚𝑎𝑙′, 0, 𝜎1, 0, 𝑁),

𝑗 = 0, 𝑁                                              (28) 

where the random is a command in MATLAB which 

generates random variables by the Gaussian normal 

distribution with zero mean and standard deviation σ1 and 

σ2, computed as  

σ1 = p × max |μ3(t)|, σ2 = p × max |μ4(t)|, t ∈  [0,T ].      (29) 

where p is the percentage of noise. In order to analyse the 

error between the exact and the numerical results, a similar 

formula of equations (22) will be used.  

5.1 Example 1 for (IP1) 

Consider the IP1 given by (1)–(4) with unknown 

coefficient a(t) and solve this inverse problem with measured 

input data (18). One can observe that the plot of the function 

μ′
1(t) + μ′

2(t) = (2 + e + cosh(1))(3t2 + 1) exp(t3 + t) does 

not vanish over the time interval [0,1] and hence the unique 

solvability guaranteed by Theorem 1. The analytical solution 

for this problem is given by equations (16) and (17) and it 

can be verified by direct substitution. Also, the direct 

problem (1)–(3) corresponding to current example has been 

previously solved numerically using FDM in Section 3.  

Let us begin with the case of no noise contaminated in the 

input data (4). The naive objective function (unregularized); 

i.e,         λ = 0, as a function of the number of iterations is 

plotted in Figure 3 for various mesh parameters. From this 

figure and Table 2 it can be notice that the unregularized 

objective function (25) decreases rapidly to a very low value 

of order about O(10−24) in 7 iterations. The numerical 

solution for the corresponding coefficient a(t) is shown in 

Figure 4. From this figure, one can notice that as M = N 

increase, a better result we obtain, the rmse values decrease, 

indicating that we achieve mesh independence and excellent 

agreement are obtained.  

 

Figure 3. The unregularized objective function (25) with no noise, 
for various mesh size, for Example 1. 

 
Table 2. Number of iterations, number of function evaluations, 
value of objective function (25) at final iteration and the rmse 
values with no regularization and no noise for Example 1. 

 M=N=10 M=N=20 M=N=40 M=N=80 

No. of iteration 7 7 7 7 

No. of function 

evaluations 
96 176 336 656 

Value of  

objective 

function (25) at 

final iteration 

1.1E-28 2.2E-27 5.1E-27 3.4E-24 

rmse(a) 0.2308 0.0548 0.0107 0.0024 

 
 

Figure 4. The coefficient a(t) for Example 1, with no noise and 
without regularization. 

 
Figure 5. (up) the objective function (25) and (down) the 

coefficient a(t) for Example 1, with p=1% noise and without 

regularization. 
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Next, let us fix the mesh parameter M = N = 40, for 

reasonable time consuming and add p = 1% noise to the 

measured input data μ3(t) as given by (27). Figure 5 present 

the numerical results for the case of no regularization 

employed. From this figure it can be seen that the objective 

function (25) decreasing in slow manner whilst the unknown 

coefficient is unstable and unbounded solution. This 

behaviour is expected since the problem under investigation 

is ill-posed. Therefore, Tikhonov type regularization should 

be applied in order to retrieve the stability. The L-curve 

criteria [10] employed in order to choose an appropriate 

regularization parameter λ > 0 (for IP1) or β > 0 (for IP2), as 

shown in Figure 6(a), where the residual norm is 

|| ∫ u(x, t)dx −  μ3(t)||
1

0
. 

  

Figure 6. (up)The residual norm versus the solution norm 

for the L-curve with various regularization parameters, and 

(down) The regularization parameters versus the rmse vales 

for the coefficient a(t), for Example 1 with p = 1% noise. 

Also, from this Figure 6, it can be seen that the two 

regularization parameter values located near the corner of the 

L-curve are λ = {0.0264, 0.0379}. These meet the minimum 

values of the rmse curve plotted versus regularization 

parameters in Figure 6(b). The associated numerical 

retrievals for the unknown a(t) when the two values of λ are 

selected are presented in Figure 7.  

 

Figure 7. The numerical reconstructions for a(t) for Example 

1, with p=1% noise. 

From this figure, one can easily notice that as the 

regularization parameters λ = 0.0379 a better solution 

obtained see (-∗-) line. Moreover, the numerical solution for 

the temperature are depicted in Figure 8. From this figure, it 

can be seen that stable and accurate solutions are obtained. 

Also, it reported but not included that the same behaviour it 

can be seen for higher noise levels such as p = {3,5}%. 

 

Figure 8. The exact and numerical solutions and the 

absolute error between them when (up) λ = 0.0264 and 

(down) λ = 0.0379, for Example 1, with p = 1% noise.  

5.2 Example 2 for (IP2)  

Now, we consider the inverse problem (1)–(3) and (5) with 

the unknown coefficient a(t) and solve this problem with the 

same data as in Example 1, but notice the difference for 

equation (4), the integral type, replaced by (5), which is the 

difference of heat fluxes.  

 

 

Figure 9. (up) The unregularized objective function (26), i.e, 

𝛽 = 0, and (down) The exact and numerical solution for a(t), 

for Example 2, with p{0,1}% level. 

As we notice that in previous example we can find the 

numerical solution for the temperature related with each 

noise percentage. Also, it is reported in this case we can 

obtain stable and accurate solutions when we apply 

regularization as we did in Example 1. Therefore, the results 

associated with regularization part has been omitted. 
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6. Conclusions  

Two inverse coefficient identification problems have been 

numerically investigated. The finite difference method has 

been used in order to solve the direct problem. Whilst 

inverse problem recast as a nonlinear optimization problem 

which solved using MATLAB optimization toolbox. The 

numerical results are presented and it found accurate and 

stable. 
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