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Abstract: Recovery of time-dependent thermal conductivity has
been numerically investigated. The problem of identification in
one-dimensional heat equation from Cauchy boundary data and
mass/energy specification has been considered. The inverse
problem recasted as a nonlinear optimization problem. The
regularized least-squares functional is minimised through Isgnonlin
routine from MATLAB to retrieve the unknown coefficient. We
investigate the stability and accuracy for numerical solution for two
examples with various noise level and regularization parameter.
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1. Introduction

The concept of so-called inverse/backward
problems have been dominated the research in late twentieth
century due to wide range of applications; such as in
engineering, geo- physics, economics and ecology [1].

During the consideration of inverse problems, the choice of
overdetermination/additional conditions play an important
role in the proofing the existence and uniqueness of the
solution for example see, [2, 3, 4].

We investigate the numerical reconstruction of time-
dependent thermal conductivity with respect to initial and
non-homogeneous Dirichlet boundary conditions. Whilst, the
overdetermination  conditions are the energy/mass
specification and the heat flux difference.

The organization of the paper as follows. In next section, the
mathematical formulation and the unique solvability
conditions are stated. In Section 3, the Crank-Nicolson FDM
scheme for the direct problem has been presented and
developed [5]. While, in Section 4 we consider the numerical
solutions for inverse problems based on finding the quasi-
solution for associated nonlinear optimization problem.
Section 5, devoted to the numerical results and discussion.
Finally, the conclusions are highlighted in Section 6.

[1]

2. Mathematical formulation

Consider the fixed parameters h > 0 and T > 0 which
represent the length of a finite slab and time, respectively.
The solution domain denoted by

D={(x,t): 0<x<h; 0<t<T}.
In this paper, we consider the heat equation of the form

U = a(t) Uy, (x,t) €D Q)

where a(t) > 0 is coefficient and u(x, t) is the temperature.
The heat capacity is taken to be unity and therefore the
coefficient a(t) represent the time-dependent thermal
conductivity. Equation (1) has to be solved subject to initial

condition

u(x,0) = p(x) 0<x <h (2)
and nonhomogeneous Dirichlet boundary conditions
u0,t) =, (&) ulht)=p,(t) 0<t <T (3)

If the coefficient a is given the equations (1)—(3) formulate a
direct Dirichlet problem for finding the unknown
temperature u(x,t). The outputs of interest which should be
computed are energy/mass specification

[ ux, dx = ps(t) 0<t<T (4
and the difference of heat flux at the ends
U (M t) —u,(0,8) = uu(t) 0<t <T (5)

If conductivity coefficient a is unknown, in this case, an
inverse problem for coefficient identification should be
solved.

The problem for identifying the coefficient a(t) has been
considered in [6] with periodic boundary conditions and
nonlocal overspecified data. In this paper, the consideration
has been given to recovery the unknown coefficient under
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different boundary and overdetermination conditions as in
equations (4) and (5). The unique solvability theorems for
theses inverse problems are stated in the next subsections

2.1 Inverse problem 1 (1P1)

The IP1 requires determination of thermal conductivity
a(t) > 0 together with the temperature u(x, t) satisfying the
equations (1)-(4).

The unique solvability for IP1 was established in [7].

Theorem 1. The inverse problem (1)—(4) is uniquely
1 ’

solvable if p(x) €C [0, h], #j(t) EC]'[O, T1,i=1,2 ¢(h-

X) — ¢ (x) >0 on [0,h/2], 1 (t) + 12 (1) >0 on [0, T] and at

least one of the functions ,ulr(t) + 115 ’(t) and go’(h -X) — go’(x)
is not identically zero.

Remark: notice that by differentiating equation (4) with
respect to t and invoke (1) we have

, h h
wo(®) = [ ue(x, t)dx = [ a()uy(x, t)dx (6)
after simple manipulation we obtain

_ u'5(©)
a(t) = Y TS 0<t<T, (7
att=20
a(0) = — L3 (®)

@1 ()-¢1(0)’
provided that ¢'(h) — ¢'(0) # 0.
2.2 Inverse problem 2 (1P2)

The IP2 requires to solve the equations (1)—(3) and (5). Also,
the unique solvability for IP2 was established in [7] and
reads as follows.

Theorem 2. Assume that the following conditions are
satisfied

1. uj eClo,T],i=1,2,4, o(x) €C2[0,h],
o(0)+o(n)=u1(0)+12(0) and ¢ (h)=¢'(0) = n4(0);
2. W(t)>0, i=1,2, ua(ty=0 for te[0,T], ¢ (x)>0 on

[0,h].

Then the inverse problem (1)—(3) and (5) possesses a
solution.

Theorem 3. Assume that the functions ¢ (x) and u4(t)
satisfy the conditions

[2]

1. o(x) € C2[0,n], na(t) € CH{O.T], ") = 0 on [O]
and 1 4(t) on [0,T];
2. atleast one of the functions (p”(x) and u’4(t) is not

identically zero.

Then the solution of the inverse problem (1)—(3) and (5) is
unique.

3. Direct problem

In this section, consider numerical solution for the direct
initial boundary value problem given by equation (1)-(3).
The Finite difference method (FDM) with Crank-Nicolson
scheme [5], has been employed which is unconditionally
stable and second-order accurate in space and time. In order
to employ this scheme, denote u(xj,tj) := uj j and a(tj) := gj,
where Xj =iAx and tj=jAt, (X{)=0i, uk(tj)=ukj,f0r k=1,2,3,4,
i=0,M, j=0,N, Ax=h/M and At=T/N.

Considering the heat equation (1), the Crank-Nicolson
method, discretise (1)—(3) as

Upjpr — Upj l(a' Upprjer — 241 + Uimq je1
At ANEAS (Ax)?
g it = 2u;,; + ui—l,j)
J (Ax)Z ’
i=1,M-1),j=0,(N—-1) (C))
U =9k), i=0,M (10)
uO’j = Ml(tj),uM‘] = #Z(tj)’ ] - 0, N. (11)

equations (9)—(11) can be discretise in the difference
equation form

= Aj+1U—1 j+1 + (1 + 2A5+)Ui j+1 — Aj+1UI—] j+]
= AjUi=1j + (1= 2A)U;j + Ajui-1,j (12)

for i=0,M-1, j =0,N-1 where 4; = (At)a;/(2(Ax)?) . At
each time step ¢;, for j= 0,N-1 using Dirichlet boundary

conditions the above difference equation can be expressed as
(M —1) x (M — 1) system of linear equations take the form

Cu]-+1 = Ku] +b

where Uj+1 = (U1 j+1, U2 j+1, - uM_1,j+1)T for j=0,N,

b = (by, b2, ..., bM_l)T, C and K are tridiagonal
matrices.

An example, consider the direct problem (1)—(3) withh=T
=1, and

@(x) = u(x,0) = exp(x) + cosh(x) (13)

() = u(0,t) = 2exp(t® +1t) (14)
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Uz (0) = u(1,t) = (exp(1) + cosh(1))exp(t3 +t) (15)
a(t) = 2t? + 1. (16)
The true solution is given by

u(x, t) = (exp(x) + cosh(x))exp(t® + t) 17)

Figure 1 present the numerically obtained solution for u(x,t).
This figure indicates that an excellent agreement with true
solution.

Absolute error

Figure 1. the exact solution (left), numerical solution (middle),
absolute error between them (right), for direct problem (1)-(3).

On the other hand, outputs of interest equations (4) and (5),
which are analytically given by

us(t) = (e + sinh(1) — D exp(t3 +t), t€[0,1] (18)

us(t) = (e +sinh(1) — D exp(t3 +¢t), t€[0,1] (19)

BEETR

Figure 2. The exact and numerical (left) us(t) (right) p4(t) for
M=N€{10,20,40,80} for direct problem.

Figure 2 explain that the true and numerical solutions for
equations (4) and (5) are indistinguishable. The true
solutions are given by equations (18) and (19), whilst the
approximate results have been computed using the following
second order finite-difference and trapezoidal rule formula.

1
() +ua(t

1
u3(tj) = f u(x, t]-)dx
0 M-1
j) + 22' u,',j>.
i=1

N
j=0N (20)
Ay 1 — Uy i — 3o (t;
O T
_ 4‘u1']' - uz']’ - 3[11(1:1)
2 Ax ’
j=0,N, (21)

3]

To measure the accuracy of our numerical results, the root
means square errors (rmse) between the numerical and the
exact results for equations (4) and (5) are shown in the Table

M=N 10 20 40 80
rmse(us;) 0.0243 0.0058 0.0014 3.2E-4
rmse(u,) 0.2340 0.0562 0.0136 0.0033

1 which shows the mesh convergence,

rmse (i) = J%Zﬁil(u,f"’”"" — puXatyny | =34 (22)

Table 1 .The (rmse) given by (22), between the true and numerical
solution for (4) and (5) for M=N € {10,20,40,80} for direct problem
(1)-(3).

In this table it can be seen that as M = N increase the rmse
values decrease indicating the mesh convergence.

4. Numerical solutions of the inverse problems

Suppose the coefficient a(t) > 0 is unknown, in this case we
deal with inverse problem. To solve this, one can look at the
quasi-solution [8], given by solving the minimization of the
least-squares gap, for nonlinear ill-posed and inverse
problem. We employ the Tikhonov regularization method
based on minimizing the following functional;

h 2
F(a) = || uG dx = us @) + Allall?, (23)

for IP1 and the corresponding functional for IP2 given by

G(a) = llux(h, t) — u (0,8) — pa(OII* + Bllall?, (24)
where u solves (1)-(4) or (1)—(3) and (5), respectively, A >0
and B > 0 are regularization parameters and the norm is

usually the L2 [0, T ]-norm. The discrete form of the
functionals (23) and (24) are;

F(a) =YY, [fohu(x, tj)dx - ,u3(tj)]2 +AYY a?, (25)

N
G(a) = Z[ux(h: tj) - ux(O, tj) - #4(t]')]2
=0

(26)

Clearly if L = B = 0, the above equations yield the ordinary
least-squares methods which is usually produce unstable
solution for noisy input data. It is worth to mention that, the
minimization of F or G subject to the physical constraints
that the thermal conductivity is positive quantity. The
minimization processes are accomplished using the
MATLAB routine Isgnonlin from optimization toolbox, [9].
This routine based on Trust-Region- Reflection (TRR) to
find the local minimization of sums of squares functions
starting from initial guess.
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The needed parameters for the routine are taken as follows;

e Solution Tolerance (xToI)=10_1O,

e Function Tolerance (FunToI)le_lo,

e Initial guess (alO =a(0)) for IP1 and IP2,
The lower bound for a is 10710 and the upper
bound is 103,

5. Results and discussion

We discuss, in this section, a couple of test examples to
illustrate the accuracy and stability of the numerical results.
For simplicity, we take h = T = 1. In addition, we investigate
the problems for exact and noisy inputs data. We add noise
to the measured input data (4) and (5) as

phoise (t]-) = U3 (tj) + random('Normal’,0,0,,1,N),
j=1N (27)

uiose(t;) = uy(t;) + random('Normal’, 0, 0,0, N),
j=0N (28)

where the random is a command in MATLAB which
generates random variables by the Gaussian normal
distribution with zero mean and standard deviation o1 and
62, computed as

o1 =p x max |u3(t)l, 02 = p x max ug(t), t€ [0,T]  (29)

where p is the percentage of noise. In order to analyse the
error between the exact and the numerical results, a similar
formula of equations (22) will be used.

5.1 Example 1 for (IP1)

Consider the IP1 given by (1)-(4) with unknown
coefficient a(t) and solve this inverse problem with measured
input data (18). One can observe that the plot of the function
wq(t) + o) = (2 + e + cosh(1))(3t2 + 1) exp(t3 + t) does
not vanish over the time interval [0,1] and hence the unique
solvability guaranteed by Theorem 1. The analytical solution
for this problem is given by equations (16) and (17) and it
can be verified by direct substitution. Also, the direct

problem (1)—(3) corresponding to current example has been
previously solved numerically using FDM in Section 3.

Let us begin with the case of no noise contaminated in the
input data (4). The naive objective function (unregularized);
ie, A =0, as a function of the number of iterations is
plotted in Figure 3 for various mesh parameters. From this
figure and Table 2 it can be notice that the unregularized
objective function (25) decreases rapidly to a very low value

of order about 0(10_24) in 7 iterations. The numerical
solution for the corresponding coefficient a(t) is shown in
Figure 4. From this figure, one can notice that as M = N
increase, a better result we obtain, the rmse values decrease,

[4]

indicating that we achieve mesh independence and excellent
agreement are obtained.

—%— M=N=10

—&— M=N=20

— P M=N=40
; ——— —&— M=N=80

Objective function

3 4
Number of Iterations

Figure 3. The unregularized objective function (25) with no noise,
for various mesh size, for Example 1.

Table 2. Number of iterations, number of function evaluations,
value of objective function (25) at final iteration and the rmse
values with no regularization and no noise for Example 1.

M=N=10 M=N=20 M=N=40 M=N=80

No. of iteration 7 7 7 7
No. of function 96 176 336 656
evaluations

Value of

objective 1.1E-28 2.2E-27 5.E-27 3.4E-24

function (25) at
final iteration

rmse(a) 0.2308  0.0548  0.0107  0.0024

Figure 4. The coefficient a(t) for Example 1, with no noise and
without regularization.

Objective function

)
10° 10 10° 10"
Number of lterations

| exact
—e— =0

T T s—ﬁ?’—\,«"-ﬂv‘s‘f"‘ﬁrﬂ/?w =4
o 01 02 03 04 05 06 07 08 03 1

t
Figure 5. (up) the objective function (25) and (down) the
coefficient a(t) for Example 1, with p=1% noise and without
regularization.
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Next, let us fix the mesh parameter M = N = 40, for
reasonable time consuming and add p = 1% noise to the
measured input data u3(t) as given by (27). Figure 5 present

the numerical results for the case of no regularization
employed. From this figure it can be seen that the objective
function (25) decreasing in slow manner whilst the unknown
coefficient is unstable and unbounded solution. This
behaviour is expected since the problem under investigation
is ill-posed. Therefore, Tikhonov type regularization should
be applied in order to retrieve the stability. The L-curve
criteria [10] employed in order to choose an appropriate
regularization parameter A > 0 (for IP1) or § > 0 (for IP2), as

shown in Figure 6(a), where the residual norm is
1
Il J, uCx Bdx — u3®ll.
25 w‘ T T T T T T T
20 Lj‘f“\_“ i‘sl)‘:“_UEG‘ #=0.0379
5 \& 1
- s
10 e -
5! 1‘5 é 2‘5 : 35 -‘1 4:5 77—.":” 55
Residual norm
e
= \m\ 2200264 4=0.0379
C) e | / 4
w ‘ /‘ .- -
E L e
B \ L el
| / /e"/
&\\M '\’ #/ B ,Ja//ﬁy

Lol RV A

107 10"
Regularization parameter i

Figure 6. (up)The residual norm versus the solution norm
for the L-curve with various regularization parameters, and
(down) The regularization parameters versus the rmse vales
for the coefficient a(t), for Example 1 with p = 1% noise.

Also, from this Figure 6, it can be seen that the two
regularization parameter values located near the corner of the
L-curve are A = {0.0264, 0.0379}. These meet the minimum
values of the rmse curve plotted versus regularization
parameters in Figure 6(b). The associated numerical
retrievals for the unknown a(t) when the two values of A are
selected are presented in Figure 7.

exact

—&—1=0.0263 s

i 4l
*— 3=0.0379

Figure 7. The numerical reconstructions for a(t) for Example
1, with p=1% noise.

From this figure, one can easily notice that as the
regularization parameters A 0.0379 a better solution
obtained see (-x-) line. Moreover, the numerical solution for
the temperature are depicted in Figure 8. From this figure, it
can be seen that stable and accurate solutions are obtained.

[5]

Also, it reported but not included that the same behaviour it
can be seen for higher noise levels such as p = {3,5}%.

Exact solution

Approximate solution for M=N=40

00 t

Figure 8. The exact and numerical solutions and the
absolute error between them when (up) 2 = 0.0264 and
(down) 1 = 0.0379, for Example 1, with p = 1% noise.

5.2 Example 2 for (1P2)

Now, we consider the inverse problem (1)—(3) and (5) with
the unknown coefficient a(t) and solve this problem with the
same data as in Example 1, but notice the difference for
equation (4), the integral type, replaced by (5), which is the
difference of heat fluxes.

e
s g
S 10’
©
c
S Y
= ~
10 - X
:2; \Q\;\_‘
e
4 =
S 10
10 . L I L | L '
0 1 2 3 4 5 6 7 8
Number of Iterations
5
exact
“— p=0
" Ja- \/
= g - i
s ) i F
2k ]| !\ 1 Jx 5
[ AP Y
|\ . e A
T e iy ¥
VA
¢ i

Figure 9. (up) The unregularized objective function (26), i.e,
B =0, and (down) The exact and numerical solution for a(t),
for Example 2, with p £{0,1}% level.

As we notice that in previous example we can find the
numerical solution for the temperature related with each
noise percentage. Also, it is reported in this case we can
obtain stable and accurate solutions when we apply
regularization as we did in Example 1. Therefore, the results
associated with regularization part has been omitted.
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6. Conclusions

Two inverse coefficient identification problems have been
numerically investigated. The finite difference method has
been used in order to solve the direct problem. Whilst
inverse problem recast as a nonlinear optimization problem
which solved using MATLAB optimization toolbox. The
numerical results are presented and it found accurate and
stable.
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Abstract: An R-module A is said to be J-regular module
if, for each a €]J(A), r € R, there exist t € R such
that ra=rtra. We proved that each unitary R-
module A contains a unique maximal J-regular
submodule, which we denoted by M (A). Furthermore,
the radical properties of A have investigated. We proved
that if A is an R-module and N is a submodule of 4,
then J N) N M (A) € M (N). Moreover, if A is
"projective,” then M (A) =M (R) -J (4) and M (4) N
J(R).J (4) = (0).

Key Words: pure submodules, J-pure submodules,
regular modules, J-regular modules.

Introduction

Throughout this paper, R is a commutative ring with
identity and all modules are left, unitary, unless otherwise
stated. An element r € R is said to be regular if there
exists t € R such that rtr = r; aring R is called regular if
and only if each element of R is regular. An ideal I of a
ring R is regular if each of its elements is regular in R;
indeed, a regular ideal I of R is itself a regular
ring [1]."Brown and McCoy proved in" [1] that each ring
R contains a unique maximal regular ideal M(R), which
satisfies the well-known radical properties. The ideal
M(R) is called the regular radical of R. The concept of
regularity extended to modules in several ways and in [2]
the notion of F-regular modules (in the sense of
Fieldhouse [3]) generalized to GF-regular modules . Let
M be an R-module; an element x € M is, said to be GF-
regular if for each r € R there exist t € R and a positive
integer n such that r™tr"x = r"x. An R-module M is
called GF-regular if and only if all its elements are GF-
regular. In [2] that each module contains a "unique
maximal GF-regular submodule".
An R-module M is said to be J-regular module if for each
m € J(M), r €R, thereexist t e R such that rm =
rtrm[4].
A submodule N of an R- module A is called J- regular if
each element of N is J- regular and every submodule of a
J- regular module is a J- regular module. Also, the
concept of J- pure submodule has been introduced. A
submodule N of an R-module M is called a J-pure if N is
pure inJ (M), i.e. for each ideal | of R, 1 J (M) n N =
IN, where J (M) is the Jacobson radical of M [4]. In this
paper, we show that each module contains a "unique
maximal J- regular submodule,” which we denoted by M
(A), and we show that M (A) satisfies some but not all of
the usual radical properties .
1. Main Results
Definition 1.1. Let A be an R -module. The unique
maximal J-regular submodule of a module A denoted by

M (A). If there exist a submodule containing every J-
regular submodule of A, this means that M (4) is a J-
"regular submodule"” which is not contained properly in
any J-"regular submodule™.

Remarks and Examples 1.2

(1) IfA=R, then M (A) isanideal of R .

(2) Itis clear that A is J- regular R- module if and only
ifM(A) = A

(3) Since the Z-module Z, is J-"regular" [4]. Then M (Z,)
=7,

(4) Each "submodule in the"™ Z -module Q is not J-
regular, hence M (Q) = (0). Suppose that, M (Q) = B for
some submodule B of Q implies that B is J-"regular" as
Z-module. Take any element x € J (B), x =% where

a and b are two non — zero elements in Z. If we take an
ideal <n> of Z where n is greater than one, then the non

—zero cyclic submodule generated by % is not J- pure

inB, thatis<n > J(B) N<;># <n><r> whichis
a contradiction as B is J-regular.

(5) The Z— module Z is J- regular since J (Z) =0 [4],
then by remark 1.2 M (2) = Z.

(6) The module Zp~ as Z —-module is not J- regular. To

show that, let G, =<P—1n+Z > be any submodule of
Zpo where P is a fixed prime number and n is a
positive  integer . Then Pin +Z=pP" (P% + Z) €
P (Zp) N G, butpinz ¢ P" < Pin+ Z>7 =0g,.

Thus M (Zpo) # Zpe. Now, since every submodule
G, =< Pin+ Z > of Zpe is isomorphic to the module

Zpo as Z —module, where Zp CZp2z C Zpz C -+ C
Zpn C . Thus M (Zpw) = Zpn for some integer n = 0,
this follows from the fact that Zpo = U,so Zpn =
a0 < o+ 2>

(7) If B is a J- regular submodule of an R-module A,
then B is not necessary be a J- pure submodule of A. For
example, consider the module Zg as Z— module, let B =
<4 >={0,4}= Z, beJ- regular module, but B is not
J- pure submodule of Zg, since if 1=2Z is an ideal of
Z, then 1J(Zg) n {0, 4} = 2{0,2,4,6} n {0, 4} {0}. |
{0,4} = 2{0,4} = {0}. Hence, the maximal J- regular
submodule of ZgisM (Zg) = <2>+<4> =<2 >,
(8) Let A be an R-module and M*(A4) be the maximal
regular submodule of A then it may be M*(A) = M(A).
For example the module Zg as Z-module. It is easily to
show that the regular submodules of Zg are < 0 > and
<4>since <4>=7, thus M*(Zg) = <4 >. But
M(Zg) =< 2 >, therefor, M*(Zg) = M(Zg).

[7]
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Theorem 1.3. Every R-module contains a unique
maximal J-regular submodule.

Proof: Let A be an R-module and G = {N: N is a J-
regular submodule of A}. Notice that as (0) is a J-
regular submodule then G is a non-empty set. Let {Ni}
be an ascending chain in G and B = U;jc, Ni. Letbh € J
(B) then b € J (Uijea Ni) = Ujea J(NQ). In particular, if
Ni , for each i = 1,2. To show J(N;UN,)=J(N;)UJ(N,).
Let x €J(N; UN,) then R, is small in N; UN, by
[3].There exista submodule K of N; UN,, such that
N, = N; UN, = R, + K, then implies x € J(N,). Hence
J(Ny UN) € J(N;) UJ(N,).

Conversely, assume that y € J(N;) UJ(N,), then either
y € J(Ny) ory € J(N,). If y € J(N,), then R, asmall
in N, = N, UN, . So we obtain isasmall in N; UN,.
Hence y € J(N; UN,). There exists j€ A such that b
€J(N;), but N; is aJ- regular submodule, then for each r
€ R, there exist t € R such that rtrb = rb therefore b
is a J- regular element in B which implies that B is a J-
regular R-module. Now, by Zorn’s Lemma, G contains a
maximal element, which we call it M. To prove the
uniqueness of M, assume that M; and M, be two
"maximal J-regular  submodules” in A, then for any
maximal ideal P of R each of M;p and M,p "is
semisimple over" R, [4]. Now, let M;p N M,p =K,;
then K, S M;p and K, € M;p, thus Myp = K,+ A;p
and Myp = K,+ A,p, where A;p and A,p are two
submodules of Ap [5]. Hence, Mp +M,p = A;p + K+
A,p, but each of A;p, A,p, and K, is a"semisimple
submodule;” thus Myp +M,p is a "semisimple
submodule” which implies that M;p +M,p is J-
"regular" [5]. So M; +M, is a J-"regular submodule”
[4]. Now, as of M; and M, "is a maximal J-regular
submodule” and hence M +M, = M, = M.

Proposition 1.4. Let A be an R-module and N a
submodule of 4, then J(N) N M (A) € M (N).

Proof: Let x €]J(N) and x € M(A), thus for each
r € R, rx = rtrx for some t € R. Then x is J- regular
element in N, which means that x € M (N).

Proposition 1.5. Let A; and A, be R-modules, then M
(A; @ A2) EM (4,) @ M (4,).

Proof: Letc e M (4; @A,) and A= A, @ A, thenc
= (a, b), where a € A;and b € 4,. Since c is J-regular
element in A, then each of aandb s J- regular
element, in A;and A4, , respectively. Which means that
a€M(A;)and b € M (4, ), hence ceM
(A1) ©M (42).

Recall that "the annihilator of an element x of an R-
module A denoted by ann(x) is defined to be ann(x) =
{r € R: rx = 0} and the annihilator of A denoted by
ann(A) is defined to be ann(A) = {r € R: rx = 0 for
every x € A}. Clearly, ann(x) and ann(A) are ideals

of R, [6]." In [4] we prove that —R_ isthe regular ring

ann(x)
for each x € J (A) if and only if A is J-regular R-
module. In factif ——— isa regular ring, then A is
ann(J(A))
J- regular.

Proposition 1.6. Let A and A’ be R- modules,and f: A
— A' be an R-homomorphism;  then f(M(4)) <
M(f(A)).

(8]

Proof: Let a € M (A), then a is J- regular element in A
and a € J (A), which implies that an:(a) is regular ring,

for each a € J (A) [4]. But ann(a) S ann((a)) and
fl@) € f( (A) € J (A), hence exists @: —

ann(a)
ﬁ define by ¢ (r +ann(a)) = r + ann(f (a).

- R . .
Since prml regular ring, for each a € J (A), then by [7]

R . . .

@) is regular ring, hence f(A) is J- regular R-
module [4] and f(a) € M(f(A)). Thus f(M (A)) & M
((A)).

Proposition 1.7. Let A be a J- regular R-module, then M

A -—

Gy = O
Proof: Since AisaJ- regular, then M (A) =A. Thus M

(o) =M Q) = ).

Remark 1.8. For any R- module A, M (ﬁ) # (0) in

general. For examples, the module Zg as Z-module M

Zg N\ _ Zg ~ _ Zg
Gz =M (&) = MZ) =7, Thus (o)
(0).

Proposition 1.9. For each R-module A, M(R)- A< M
(4).

Proof: For each a € A, let f,: R — A be an R-
homomorphism defined by f,(r) = ra for eachr € R,
then by Proposition 1.6, f, (M(R)) € M (4). On the
other hand, M (R). A =3 f,(M(R)). Hence M
(R)-A S M(A).

Remark 1.10. The reverse inclusion M (4) € M (R) -
A, in Proposition 1.9 is not true in general. For example,
the module Z, as Z-module where M (Z,) = Z, € M
(2) Zy = Z(Z,).

Let J(R) be the Jacobson radical of a ring R. Brown and
McCoy proved [1] that M (R) N J(R) = (0), where R
is F- regular ring and for R is J-regular ring [4] M (R) N
J (R) = (0). However, this is not true for J- regular
modules for example, if A = Z, as Z-module, then M (4)
=Z, and J (4) = {0, 2} but M (4) N J (4) = {0, 2} # (0).
Lemma 1.11. Let A be an R-module and N be a J- pure
submodule of A. Let | be anideal of R, then N=IN
ifand only if N < 1J(A).

Proof: Since N is J- pure submodule in A, then Nn
I[J(A) = IN [4], for some ideal | of R. If N = IN, then
NNIJ(A) € N and hence N < 1J (A).

Conversely, if N < IJ (A), ThenNNIJ(A) =N, but N
N IJ(A) = IN; since N is J-pure submodule. Hence N =
IN.

Recall that "(Nakayama's Lemma) for anideal | of R
then | < J(R) if and only if for every finitely generated
R- module M, if IM =M, implies M =< 0 > [5].
Lemma 1.12. Let | be an ideal of a ring R contained in
J(R) and let N be a finitely generated J- pure submodule
of an R- module A with N € | J(A) implies that
N=<0>.

Proof: By Lemma 1.11, we obtain N = IN and since | &
J(R) we have N = < 0 > by "Nakayama's Lemma." If A
is "F-regular R-module" and M (A) is "pure submodule"
of A, then M(A) nJ(R).A = (0) [7]. For J- regular R-
module we have the following:
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Proposition 1.13. Let A be an R-module. If M (4) is a
J- pure submodule of A, then M (4) NJ(R) -J (4) =
(0).

Proof: Let x € M (A) N J (R) - J (A), then x € M (4)
and x € J(R) - J (4). Let N be the cyclic submodule
generated by x. It's clear that N < M (4), since M (4)
is J- regular module; then N is J- pure in M (4).
But M (4) is J- purein Aso N is J-pure in A [4]. On the
other hand,N < J(R).J(A), hence by Lemma 1.12,
we have N = 0. Which implies that M (A) N J(R) - J (A)
=(0).

Recall that "an R-module P is said to be a projective
module if for any homomorphism f : P — B and for any
epimorphism g: A — B; where AandB are two R-
modules there exist a homomorphism h: P - A such that
f=g-°h.[8]".

Recall that "(Dual Basis Lemma) an R- module A is
projective module if and only if there exists a family of
elements { x;:i€ A} € M and {f;: i€ A} € M*= Hom
(M;R) such that forany x € M, f;(x) =0 for almost all
i, (equivalently, f;(x) = 0 only for a finite number of
iEA and x =Xicax; fi(x), [8]"

Theorem 1.14. Let A be a projective R-module then

(1) M(4)=M(R)-J(4),

(2) M(A) is aJ- pure submodule of A for each ideal | in
R.

Proof: (1) Let x € M (4). x € J (A). Since A is
projective R- module, then by "Dual Basis Lemma"
there exists a family { x;:i€e A} of A and {f:
i€ A} € M*"= Hom (A, R) where f;(x) = 0 only for
finite number of i€ A and x =X;c 5 x; fi(x). But fi(x) €
M (R) by Proposition 1.6. Thus M (4) € M (R) -J (4).
We get the other direction of the inclusion by Proposition

1.9. Therefor M (A) =M (R) - J (4).

(2) Letlbeanideal of aring R.

M(A) n1J(A) = M(R)J(A) nIJ(A) = (M(R) N DJ(A).
But  M(R) is J- pure ideal in R, then M(R)nI=
IM(R).

Hence M(A) N 1J(A) = IM(R)J(A) = IM(A).

Recall that "if A isan R-module, then the trace of A
is tr(A) =Y rea+ f(A), where A"=Hom(4,R),[9]"
Proposition 1.15. Let A be a J- regular R-module.
(A) =R, then RisaJ-regular.

Proof: Since A is J-regular, then M (4) = A, Remark
(1.2) (2) and then M (A) = f (M (4)) < M(R) by
Proposition (1.6) where f € A* = Hom(4, R). Thus R
= tr(4) = Ysear f(A) € M (R) implies R = M (R).
Therefor R isa J-regular .

Proposition 1.16. Let A be a finitely generated R-
module and M (A) +J(A) =A, then Ais J- regular .
Proof: Since A is finitely generated, then J (A) is small
submodule of A, but M (A) +J (A) =A, therefore M (A) =

A and hence A is J- regular.

Remark 1.17. For any R-module A, M (A) +J (A) #

A in general. For example, the module Zg as Z- module
is not J-regular where M (Zg) +J (Zg) = <2 >+<2>
=< 2>+ Zg.

Recall that "a submodule N of an R- module A is
called an essential submodule of A if for each
submodule L of A with Nn L =0 implies L=0," [8].
We have the following:

If tr

(9]

Proposition 1.18. Let N be a submodule of an R- module
A and J (N) be an essential submodule of A. If M (N) =0,
then M (A)=0 .

Proof: Since J (N) nM (A) € M (N) by Proposition
1.4. Then 0 =J (N) n M (A). But J (N) is an essential
submodule of A, "thus M (A) = 0.

Recall that a submodule K of an R-module A is said to
be stable if f(K) < K for each R-homomorphism,f: K —
A" [10]. Proposition 1.19. For any R-module A, then M
(A) is "stable submodule” of A.

Proof: Let f € Hom(M(A),A). By
proposition 1.6, f(M(M(A))) € M(A).But M (M (A))
=M (A) since M (A) is J- regular. Thus, f(M(A)) =
f(M(M(A))) € M(A) . Hence M (A) is “stable
submodule.”

Recall that "a non-zero submodule K of an R-module A
is said to be dense in A if K generates A, that iSA =
ZfEHom(K,A)f(K)" [11]

Proposition 1.20. Let A be an R-module and M (A) be a
"dense submodule” in A, then A is J- regular module.
Proof: Since M (A) is "dense" in A, then A=
Yrenommma f(M(A)).  But M (A) is "stable
submodule” of A by the previous Proposition 1.19, thus
fM(A)) € M(A)

implies A = ¥ renommca)a) f(M(A)) € M(A). Then

A = M(A) therefore A is J- regular .
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Abstract: Let M be an R-module and T be a submodule
of M. A submodule K of M is called ET-small submodule
of M(denoted by K«grM) , if for any essential
submodule X of M such that TESK+X implies that TEX.
We study this mentioned definition and we give many
properties related with this type of submodules.
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1. Introduction

Throughout this paper R is a commutative ring with
identity and M a unitary R-module. A proper submodule
N of M is called small (N « M), if for any submodule K
of M (K = M) such that K + N = M implies that N = M.
A submodule N of M is essential (K =_,M) if KNL=0,
then L=10, for every L= M [1] . A submodule N of M is

closed (N =_M) if N has no proper essential extensions
inside M that is, if the only solution of the relation N
=.K =, M is N=K[2]. The submodule N of M is called
an essential- small (N «¢M )submodule of M , if for
every essential submodule T of M such that M = N + T
impliesT=M[3].

In [4] the authors introduced the concept of small
submodule with respect to an arbitrary submodul ,that a
submodule K of M is called T-small in M , denoted by K
«T M, in case for any submodule X of M, such that Tc
K+X, implies that TSX .

In this work we introduce essential T-small (ET-
small) submodule, where an R-module M and T be a
submodule of M. A submodule K of M is called ET-small
submodule of M (denoted by K&gr M ), if for any
essential submodule X of M such that TESK+X implies
that TEX. In the first section , we give the fundamental
properties of of ET-small submodules, Also we give many
relations between ET-small submodule and other kinds of
small submodules.
In the second section, we introduce essential T-
maximal(ET-maximal) submodules and the essential T-
radical (ET-radical ) submodules of M denoted by
RaderM, We give the fundamental properties of this
concepts.

2. Essential T-small submodule.

Definition2.1:Let M be an R-module and let T be a
submodule of M .A submodule K of M is called ET-small
submodule of M (denoted by K«gr M ), if for any
essential submodule X of M such that TEK+X implies
that TSX .

Remarks and Examples 2.2:

1. Consider Zg as Z-module .Let T={0,3}, K={0,2,4}.The
only essential submodule of Zg is Zg if TSK+Zg ,then
TCSZ; .ThusK<«<g1Zs.
2.1t is clear that Every T-small submodule of M is ET-

small submodule of M but the converse is not true as for
the following Consider Z,, as Z-module and Let T={0, &
, 16 }, N=8Z,, the only essential submodule in Z,, are
2224 y 4224 and 224 y T:8224 g8224 +2Zz4 and 8224g
2744 ,also 87,4 ©8Zy4 +4Z5s , 8224 C 4754 and 8Z,4C Zy
Then 8Z,, ET-small submodule of Z,, which is not T-
small submodule of Zoy since
82,,S82Z 9, +3Z,but8Z,,£3Z,,.

3. Let M be an R- module and T=0.Then every essential
submodule of M is ET-small in M.

4. Let M be an R-module and T=M .Then N«grM if and
only if N« M.

Proposition 2.3: Let M be an R-module and let T,H and
L be submodules of M such that T<Nand H<N <M
and N« M. If H«gr M, then H& g1 N.

Proof: Let H be ET-submodules of M and X be an
essential submodule of N such that TEH+X .since X <, N
and N<, M so X <, M[2], then H&gr M, and TEX .
Proposition 2.4: Let M be an R-module with submodules

N <H<Msuchthat T<H.If N&gr H,then  N<«<gr M.
Proof: Suppose that T<SN+X, for any essential
submodule X of M Since TcH, then

T=TNHE(N+X)NH=N+(XNH) by modular law , since X
<e M and H <, H, then (XNH) <, (MNH) =H [2], and
N<«gr H, then TEX. Thus N&<gr M .

Proposition 2.5: Let M be an R-module and Let T, N,
and N, be a submodules of M, Then N;<gr M and
N, <t M if and Only if Ni+N, <KLt M.

Proof: Suppose that N;<gr M and N,<gr M and Let
T< (Ny+Ny)+X, for any essential submodule X of M,
then TS N;+(N,+X), since X <, M and N,<, N,, then
N,+X <, M [2] and N;<gr M Then TS N,+X, since
N,<gr M Then TS X. Conversely, let N;+N,<gr M, to
show that N; < gt M and N,<<gr M, Suppose that TS N,
+X, for any essential submodule X of M, since N;<
N1+N,,s0 TE N{+N,+X, but N1+N,<gr M, so TC X,
thus N; < g1 M, and the same we have N,<gr M.
Proposition 2.6:Let M be an R-module and Let H be a
submodule of M .If {T;}ie, be a family set of submodules
of M such that H <gr; M, for each i €1, then H <<z 7., iy
M.

Proof:Let ( Z;c; T; )€ H+X, for any essential submodule
X of M. then for each i €l, T; € H+X and by hypothesis
T; € X, thus (EEEI T; )g X.

Proposition2.7: Let M and N be any R-modules and f:
M — N be a homomorphism .If T and H are submodules
of M such that H&gr M ,then f (H)<gr(my N .

Proof: Let f (T) # 0 and f (T)cf (H)+X , for any
essential submodule X of N .to show TSH+ f %(X) . let
t €T, then t=h +w ,for some he H and be f *(X) .Hence f
(t)=f (h + b)=f (h)+f (b) .Thus f (t)-f (h) = f (b) , thus f (t-
h) = f (b) € X and so( t-h) € f *(X) implies that t € H+ "

[10]
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Y(X).since X<, N Thus f (X) <, M [2] and H&gr M
therefore TS f™(X) .Thus f(T)SX .

Proposition 2.8: Let M be an R-module and Let T, H
and N be submodules of M such that H<N<MandH<

T.if NKgr M then H&gr M and = <\5Tj

Proof: Let N<«Egt M .To show that H<gr M, let

TcH+X, for any essential submodule X of M .butH <

N< M, so TCN+X .then TCX Thus H«<gr M. Now to

show that = <<E_ , let —c Z+Z forany essential
H H ¥ B’

g = g
of ¥ such that HeX. Then c ™ 5
H H

TEN+X , Slnce E <e — 2 then X< M [3] and N<gr
.V

M, then T€X Thus —C =

Proposition2.9: Let M be an R-module and Let T, H
and N be submodules of M such that H < N< M and

H<TandH <c M |f {'\E T then N<<ET M.

submodule

Proof: Let H&gr M and = {\E T ,to show that N<gr

M, let TEN+X, for any essentlal submodule X of M
and HSX . Now — 3 i agnc E+§ since X <, M and H
<. M then 5 <o — = [3] But;{\}:r— so—C
that TEX .thus N<<ETM
Corollary2.10: Let M be an R-module and Let K and H
be submodules of M such that K&gy M and H<gx M .
Then (HﬂK)<< E(K+H M .
Proof: Let K&gy M and H<«<gk M, since (HNK) < H
and (HNK) < K, by Proposition (1.4),(H NK) <g M and
(HNK) < gy M. Also by Proposition (1.6) we get (H NK)
Kgrsn) M.
Proposition 2.11:Let M be an R-module and Let T, K
,H and B be submodules of M such that K <H < B <M,
K<, M and H<, M. Then ‘3 % _r-x = ifand only if Z
Bl K B

|mpI|es

'l!'
L4 T:\lfand ;{-\ T+ a.:IR.

Proof: Let = To show that 2 S il , let
H = — 1 H
T+H

B+X M
B E-EX for any essential submodule Lof ¥

H H H H

and HeX .

+E B+5.’
Therefore

{-\TK
B

Hence TCT+HCB+X So TT c -

n, + = .since Xse M and K<, M then =

T+E
< 2 therefore % c .So

<e : [3 1 BUt ; {-\E[?j z

TET+KeX and hence TFL‘" c i .Thus

TR

= . To
H {'\ T n'%| .r"
H M T+KE B :r
show that = «_rex — .Let —= C =+ = for any
H EI_TJ K B oy
=
submodule Eof o KQX. Then %’{ c %

and hence TET+KcH+Xc B+X implies that Tﬁﬁ c
then

essential
F

O+X
K

T+K x H
%g;.Thus—

M M
= and =

K TiH, - { Ta'—
-\E[Tj;{ ,: “E K

T+HE B
Let == cZ+2 for any
K K H

B X - B M
==+ =,Since = <_T1xc —,
K .r# H Ea.‘lR

K, Iem Conversely, Iet
B
.‘»I
.To shows that 2 G Tex —
Ed El_le K

- X M T+E B+X
essential submodule — of —Then % c RL and hence

+H

TCT+KSB+X .50 T+H € B+X+H implies that == ¢

B+i+H _ B+X X . :
2R = 25 therefore =2 < 2 + £ since X<, M and
H H H .i'f H

T+H

H<. M then¥ = [3] and —<\ I T , therefore -

gg Then T+H € x But T+ kc T+H and XS X+H,
so T+ k € T+H € X € X+H therefore T+ k € X+H, so

T+E X+H X H . X
ECEZE X2 Since XseMand Ksthhen— <

“H }3 Ey R 'l!'

—and = {-\ I=k then ThUS - {-\ IEE

K K E(—— X K \l R

Proposrtlon2.12. Let M—M @Mz be an R- moduIe such
that R=Ann (M1)+Ann (Mz) Af N <em1 My and N, < eT0
Mz, then N1$N2<<E(Tl $T2)M

Proof: Let T;&T, & N;&N,+X, for any essential
submodule X of M .Since R=Ann (M)+Ann (M,) .Then,
by the same argument of the prove of [6, prop. 4.2, ch 1]
X= XX, for any essential submodule X; of M; and
submodule X, of M, .Hence T{&T,EN{EN,+X;EX,
Jimplies that T,;&T,< (N;+X;) & (N,+X,) .to show
that T{SN+X; and T,EN,+X, .let t;€ T;and t,e T,

then t;+t, eT1EBT,S (N+X) B (No+X;), so t; £
(N1+X4) and t; € (N,+X3), then T;€N;+X; and
T,EN,+X,, Since N;<egrp My and N,<Ker; M,, then

T,€X; and T,€X, and hence T;@ET,EX;EX,= X
.Thus N1®N2<<E(T1@T2) M.

Recall that an R-module M is called a fully stable
module if for each submodule K of M and for each R-
homomorphism f from M into K, f (K)<K [5].
Proposition2.13: Let M=&3;;M; be a fully stable module
I KK gy M;, for each i€l then
BielKi €z 7o PiatMi-

Proof: Let M=d5;;M; be a fully stable module and K;«
E(Ti) M;, for each i€l .To show that
BiaiKi € gy, 7o BiatMi Lot (B Ti) S(BiKi )X,
for any essential submodule X of M .Claim that
X=i=1(XNM;) .To show that, for each i€l let Pi: M —
M; be The projection map and let xe X ,then X€ &M
and hence x=2;.; xi where  xi € Mi, V i€l and xi # 0 for
at most a finite number of i€l .Since M is fully stable,
then Pi (x) € X, V i€l .Now P; (X) = P, (EiE[xL-) =X €
(X N Mi ) and hence x= (X xi)€Ti1(XNM;) .Thus
XQ@iE[(XﬂMi) .CIearIy @iE[(XﬂMi)QX .Thus K=
Bict(KNM;) .Now EigiT S (Bi1Ki) HBiar(XNM))
= Bi(Ki+(XNMy)) .Therefore T;S K;+(XNM;) for
each i€l .Since K;<gmiy M; ,then Tic(XN Mi) and hence
$IE[TC$IE[(XOMI) X thus $|E[K {"-El,_,l_.:, ,j@m[M
. Recall that the annihilator of M Ann(M) ={reR | rM =
0} [6], M is a faithful module if Ann(M) =0 . M is a
multiplication module if for each submodule N of M,
there exists an ideal | of R such that N=IM [7].
Proposition2.14: Let M be a finitely generated, faithful
and multiplication module and let I, J be ideals in R .Then
I<g R if and Only if IM<<E(JM) M.

Proof: Let I<gR .To show that IM<ggmy M .Let
JMcCIM+X, for any essential submodule X of M .Since
M is multiplication module, then X=KM, for some ideal K
of R and hence JMcIM+KM= (I+K)M .since M be a
finitely generated, faithful and multiplication module,
therefore M is a cancellation module, by [9] .then JSI+K
since. K <, R .Since I«<g; R ,then JESK .Hence
JMEKM=X .Thus IMK ggmy M. Conversely, let
IM&Kggmy M .To show that I1«<g R .Let K be essential
ideal of R such that JSI+K .Since M is multiplication

[11]
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module, then JIMESIM+KM .But IM<Kgym )M, therefore
JMCKM .So JEK .Thus I«<g; R.

3. Essential T-Radical of M.Recall that if M an R-
module and T be a submodule of M. A submodule K of

M is called T-maximal submodule of M if is Tgi simple

[4]. In this section, we introduce the definitions of ET-
maximal submodules and ET-radical of a module as a
generalization of T-maximal submodules and T-radical
of a module and we discuss some of the basic properties
of this concepts.

Definition 3.1: Let M be an R-module and let T be a
submodule of M .An essential submodule K of M is called
essential T-maximal(ET-maximal) submodule of M if
Tﬁ‘i is simple.

Remarks and examples 3.2:

1.1f M is a unform R-module M and let K be a submodule
of a module M, then K is ET-maximal submodule of M
if and only if K is T- maximal submodule of M.

21f T a submodule of M then every ET-maximal
submodule of M is T- maximal submodule of M but the
converse is not true as the following example.

Consider Zg as Z-module .Let T={0,7,4} and
K={1,3}.Then K is T-maximal submodule of Z¢ , where

0I3+(00 _ Z e .
[E—:f = [15_5‘1“ = {0,3,3} is simple, but K is not ET-

maximal submodule of Zg,since K is not
submodule of Zg.

Since every ET-maximal submodule of M is T-
maximal submodule .The following we get without prove
since the prove is as the same way on [4],[8]

Proposition 3.3:Let M be an R-module and( 0 =T) be a
proper finitely generated submodule of M and let
A={L<M|L «gM and L+K © T +K, for all ET-
maximal submodule K of M} and

B = {K <M | K is an ET-maximal submodule of M}.
Then &, L=,z K.

Proposition 3.4: Let M be an R-module and be a finitely
generated submodule of M and acM Then Ra isnot ET-
small submodule of M if and only if there exists H is
ET-maximal submodule of M such that agH and T <
Ra+ H.

Proposition 3.5:Let M and N be an R-modules and f : M
— N be an R-homomorphism. If T is a submodule of M
and K is an ET-maximal submodule of M such that kerf
c K, then f(K) also is an Ef(T)-maximal submodule of N.
Proposition 3.6: Let M and N be an R-modules and f : M
— N be an R- epimorphism . If T is a submodule of M
and K is an Ef(T)-maximal submodule of N, then f'(K)
also is an ET-maximal submodule of M.

Proposition 3.7: Let H and T be submodules of a module
M such that T is finitely generated and T¢H .Then there
exists a ET-maximal submodule of M containing H.
Definition 3.8: Let M be an R — module the intersection
of all essential T-maximal submodules of M is called a
essential T-Radical of M (denoted by Radgr(M)) .If M
has no ET-maximal submodule , then Radgr (M) =T .
Remarks and Examples 3.9:

1. If M be an uniform R-module then Radgr (M) = Rady
(M).

2.1f. T=M.then.Radr(M)=Rad.(M).

3.Consider Zg as Z-module .Let T=Zg and K, = Zg are

essential

ET-maximal submodules of Zg , therefore Radgr( Zg) =
Zg .
4. Consider Z, as Z-module .Let T= Z, and K= {0,7},
then K is the only ET-maximal submodule of Z, .To show

that, 34[;[,5:“'5{6,?} is a simple .Thus Rader Z,= Radt
Z,={0,7}. 5.Consider Z, as Z-

module .Let T= Z,c2, then Z,e2 has no ET-maximal
submodule and hence RadgrZ, 2= Z, .

Proposition 3.10: Let M be an R-module and let T be a
finitely generated submodule of a module M .Then
RadET (M) < ET M.

Proof: Assume that T € RadgrM +X, for any essential
submodule X of M .to show that T € X suppose that T &
X .Then by Proposition (2.7) , there exists a ET-maximal
submodule K of M such that X € K .Therefore T <
RaderM + X € K .implies that T € K, so Tﬁ‘i = 0 which

contradicts the T-maximality of K. Thus T € X, Thus
RadET (M) <Lgr M.
Lemma 3.11: Let M be an R- module and let T be a
finitely generated submodule of a module M and m £ M
such that R,,+H €T+H, for all ET-maximal submodule H
of M, then Ry, << zzM iff m eRader (M) .
Proof: Let Ry, «zM and R+ H € T+H, for all ET-
maximal submodule H of M , By Proposition (2.3) then
Rn € Awhere A = {L <M | LKLgM and L+HCST+H, for
all ET-maximal submodule H of M} . Hence R, <
RadgrM. For the converse, let me RadgrM . To show that
Rm “zrM . Suppose that R, is not ET-small submodule
M . By Proposition (2.4), then there exists H is a ET-
maximal submodule of M with m¢ H then m¢ RadgrM
which is a contradiction .Thus R,, is a ET-small
submodue of M.
Proposition 3.12: Let M and N be an R-modules and f :
M — N be an R-epimorphism such that Kerf € RadgrM.
Then f(RadETM) = Rad Ef(T)N.
Proof: Since f is epimorphism, by Proposition ( 2.5) and
Proposition(2.6),we,have  f(RadgrM) = f(lg  K) =
N riyes f () = RadgsmN, where,
A ={K <M |K is an ET-maximal submodule of M} and
B={f(K) < N| f(K) is an Ef(T)-maximal submodule of N}.
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Abstract

In this paper, we get some interesting geometric
concepts of the class of multivalent functions involving
higher order derivatives defined on the open unite disk U.
We obtain some interesting properties, like , coefficient
inequalities, distortion and growth property , closure
property, radius of stalikness and radius of convexity and
hadamard product .
Keywords: Analytic
derivatives.
1.Introduction.

Let Sp(n) denoted the class of analytic functions:
f@=z+Yr,a,z2"(p,neN={1,23,...})..(1.1),
are p—valent in unitdisc U ={{z:z e Cand |z|] < 1}. Let
T, (n) denoted the subclass of Sp(n) of the following
form:

, Multivalent , higher order

f(z) =27 — Z @ 2* (@ = 0) ... (1.2)
k=p+n
We note that T,,(1) = T,,.
Forall (z) € S,(n) , we have
£ (2) = 8(p, M)ZP™ + By on 8k, M) K™ (1.3)
Where
1l

i, j) = —

U o .
2{11(1—1)(1—2) ...... i—-j+1 jio ...... (1.4)
Aouf [1] introduced and studied the class

T, (4,1, a, B) consisting of functions f(z) € S, (n) which
satisfies:

!
| A{—gp(_zi —p(p—l)} |

!
B{ﬁ p(_zi—p(p—i)}wl(i—a)

Where 0<B<1,4A=20,21>0,05a<1,0<I<
B<1l,peNandzeU.

[13]

Let S, (».q;,A,B,A,a,l, Bbe the subclass of S,(n)
consisting of functions f(z) of the form (1.1), and
satisfying the analytic criterion:

| {ﬁ%_p@_l)} |<(1—3) ......... (1.6)

(q+2)
el e ro-n)ra-a)

Where 0<B<1,A20,1>0,05a<1,0<I<
B<1l,peN,=NuU{0}andp >gq

Further, let

T, (0,q;A,B, L, a,,f)=S5"(p,q; A,B,1,a,l,pN
T,(n) ... (L.7)

For suitable choices of n,p,q,A,B,A1l,a and B we
obtain the following subclasses:
Q) T (p,0;,A,B ,A,a,l,B) =
P;(A,B,\,a,l,B) (Aouf[1]);

(i) T/(1,0;A,B,\,a,lB) =
P*(A,B,A,a,l,B) (Gupta and Jain[2])
(iii) T (p,0;,A,B ,A,a,l,1) =

E,(A,B,),1,1,0) (Lee et al[3])

Also , we note that :

Ty (p,q;A,B,A,a,l,1) = T,;(p,q¢;A,B, A, a,l) =
fla+2)(z)

{f € Tp(n):Re (m) >a,0<a< p}
2.Coefficient inequalities
We assume throughout this paper that 0 < B < 1,4 >
0,1>0,0<a<1,0<I<B<1, p€eN,=NU{0}
and p > q and §(i, j)(i > j) is defined by (1.4).
theorem 1. A function f(z) of the form (1.2) is in the
class T,; (p,q,A,B,A,a,l,B)ifand only if
k=p+nld + B = B)lk(k — DSk — 2, q)ay <
A-PA—-a)s(p—2,9).....(2.1)
Proof. Assume that the inequality (2.1) holds true , then
|A{f 9D (2) —p(p - Dlp —2,q) 2P7972}| -
(=B |B{f9P (@) —plp—1) 8(p—2,q)zP9 7} +
A1 —a)s(p —2,q) P77
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=|a{s(p,a +2) 27712 + X7 1, 6(k, g +

k-q-2 _ _ _ p-q-2}| _ 8(p,m) — 8(p +
2)a. z (e —1)8(p —2,q) 27| Obm) = B sr-sa -
U-B)|B{s(p.q+ 202792 + 37, 8k, q + ' (B BB H-DE 2D
2) 0y 2% — p(p — DO - 2,0)27 2} + A(1 - = @) <
0)5(p - 2,q) 27717 {s(p.m) +8(p +

We have §(p,q+2) =p(p — 1)6(p — 2,q) then
:lA{p(p - 1)5(17 - 2: q)Zp—q—Z + Zl?zp+nk(k -
L8 —2,q)a, 292 —p(p — 1)S(p -

3 L1-B)(1-a)8(p-2,9) . p-m
0, M) B T=p I+ +n-D8(prn—20" m} e (3.1)

The result is sharp for the function f(z) given by

2,q)zP 172} - f(z) =z — 11-B)(1-008(p=2,) Zptn (3.2)
g w [A+BO-)I(p+m(p+n-D8(prn-za)~ :

(I=B|Bp(o — D@ — 2,¢)2P "2 + Xy k(k — Proof .By thearem 1p,+wep;r1av1e e

D&k - 2,q)aez" 972 —p(p — DE(p — [A+BU-Blp+n)p+n—-1Ds@+n

2,q)zP7 2+ A(1 - &)8(p — 2,q) 2P|

then -2,9) Z ag

=|A Dk=p+n k(k — 1D (k — 2, Qa,z 72| - k=p+n
(= B)|B Efp e kel — DOk — 2, )20 + - SA=AA =@ -2,9)
-q-2

A1 D8 =2.9) 2 < > [4+BA- Bkt - DSk - 2,0
< Z [A+ B - P)]k(k — DSk — 2, Qay|z|*~972 ks:% -AA-a)6(p—2,9) .......(3.3)

k=p+n That is

— A1 -a)( - )M —2,q)z|17? o
= } Z e
i=p+nld + B = B)](k(k — 1)6(k — 2, @)a, <A1 — Kin
a)(l=B)s(p —2,9) . AM-pA-a)ép—249) ™
Conversely , assume that f(z) € T, “TA+BU-Plk(k—Do(k—2,9) """ -(3.4)
(».q.A,B,4,a,l,p)thus From (1.3) and (3.4)
A[f D @) -p@-1)sp-2.97P~172] lf™ ()| = {5 (p, m)rP™™m — yPmE(p
B{f(0+D) (2)—p(p-1)&p-2,9)zP =972 }+i(1-0)5(p-2,q) 2P~ 12
= +n,m) Z ak}
| A[S(p,q+2)zp_q_2+Z,°{°=p+n6(k,q+2)akzk_q_2—p(p—l)&(p—z,q)zp_q_z] | < k=p+n
|B[6(p,q+2)zp_q_2+21°{°=p+n 6(k,q+2)akzk_q_2 —p(p—1)5(p—2,q)zp_q_2]+A(1—a)&(p—z,@z{é‘(‘ﬁ’lm)rp_m — -r-P+n_m5(p
l-B. fnm A1=B)(1-0)5(p=2.) }
We have §(p,q +2) =p(p —1)6(p — 2,q) then T TA+BA-P)IGp+m (p+n-18(p+n—2,q)
AT R pen k(k—1)8(k-2,q)ayz*~172
BYRL i k(k=1)8(k-2,q)arzk =92+ A(1- )8 (p—-2,q) P12 =
<l-p {6.m) - 500+

Since Re(z) < |z| for all z , we get e B)(1—a)5(— _

R AE,}’ZPM k(k-1)8(k-2,q)ayzk—9-2 n, m)[A+B(l—f?()l](f}r(nl)(pzjl(fl)258+n—2.q)' n} TP (3'5)

€ BZ,":;p_'_nk(k—l)&(k—z,q)akzk_q_z+i(1—a)6(p—2,q) zP=4-2 < and
! —(3 ......... (2.2) _ e _ l[Ff™ ()| < {5(29. M)rP=m 4 ppr-m s (o
Taking values of z on the real axis then a(pfzq)% is
real then , upon cleaning the denominator in (2.2) and +n,m) i ak}
putting z - —1, we get the desired result . k=p¥n
Corollary 1. Let the function f(z)defined by (1.1) be in < {5(1,’ m)rP=m 4 pPA-mE(p
theclass Ty, (p,q,A,B, A, «,l,B) then . B -mo—2.0)
@, < A=p)A-a)8(p-2.) tnm) [A+B(I—B)](p+n)(p+n—1)5(p+n—2.q))}

Shep+nlA+BU-Plk(k-1)8(k-2,9)

Sharpness is hold for = {5(17: m) +8(p

= — A=p)(1-a)6(p=2,9) k ) AA-P)(1-a)5(p-2,9) nlp-m
f@) =2 Z1°c°=p+n[“‘+1-‘1’(l-ﬂ)]k(zl)c—l)qzi(k—Z.q)Z ' tn, M) G BRI+ prn-Dom 2.0 }r """ (3.6)
(k=n+p,neN The proof of theorem 2 is done.
3 Distortion property Putting m=0 in previous theorem 2 , we get the following
theorem 2. Assume function f(z) is defined by (1.2) be corollary _ o
in the class T (p,q;A,B,A,a,LB) then |z =r < 1 Corollary 2. Assume function f(z) is defined by (1.2)

we have beintheclass T; (p,q;A,B,A,a,l,B) then

[14]
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Izl =r<1
2-HA-0)6@-2,0) p
@12 {1~ e sy ™) e BT
and
A-B)(1-a)6(p—-2,9)
< 14
If(2)| < {1 v } ...... (3.8)

The result is sharp.

Putting m = 1 in previous Theorem 2, we get

Corollary 3. Assume function f(z) is defined by (1.2)
be inthe class T,y (p,q,A,B,4,a,l,B) then |z| =r <
1 we have

If' @)= {p
and

If @) < {p + (4PU-08020 n} o=t (3.10)
The result is sharp
Remark : Taking ¢ = 0 and n = 1 in Corollaries 2 and
3 we obtain the result obtained

by Aouf [3, theorem 2]

4.Radius of Starlikeness and Radius of convexity
Theorem 3. Assume function f(z) is defined by (1.2) be
in the class T, (p,q,A,B,A1,a,l,B)then f(z) is p—
valent close to convexity of order n (0 <n<p) in
|z] < r, where

_ A=-Ba-a)s(p-2,9) p—1
[A+B(-B)J6(p+na+2)" “} P (3.9)

. AA-B)A—a)ds(p—2,q)
r, =inf (k
[A+B({—-p)é(+n,q+2)
>n+p,pn€EN).... 4.1)
The result is sharp , the extremal function given by (2.4).
Proof : we must show that

'@
PO _pl<p—n forlzl<r ... 4.2)

where ry is given by (4.1). Indeed we find from (1.2) that

—plSp— n for|zl<n

f'(2) N _
Zp_l _p S Z kaklzlk p
k=p+n
Thus
f'(@)
-1 —p|Sp—n
If
oo k k-p
Dk=p+n (ﬁ) a|z| <1l.......(43)

By theorem 1, (4.3) will be hold if

k-p < ([A+BU=)Ik(e=1)8(k=2,a2
(p n> || —( -P -6 (-2, )

Then

1
[4+B(=R)I(k=1)8(k=2,9)(p—1) \ k—P
2| < (WEEBG 20w )EP (4.4)

The result is follow from (4.4)

Theorem 4. Assume function f(z) is defined by (1.2) be
in the class T, (p,q,4,B,4,a,l,B)then f(z) is
p — valent starlikeness of order 1 (0<n <p)in|z| <
r,where

[A+B<z—ﬁ)](k—1>s<k—z.q>(p—n))ﬁ
AU-B)(1-a)8(p-2,9)

= lnfk2n+p (

[15]

The result is sharp the extremal function given by (2.4)
Proof. We must show that
zf'(2)

e —p|<p—n for |zl <7y (4.6)
where r, given by (4.5). From definition ( 1.2) that
2f(2) | _ Eneptkplailzk P
f(Z) - 1_Zl;.o=n+pak|2|k_p
Thus
zf (2)
1 PSP
If
DA (k “)a [z]*P < 1......... (4.7)

By using theorem 1, (4.7) will be true if
k-n k-p < ([A+BU-Plk(k-1)8(k-24
(p n) 2177 < ( -H1-D80-20) )
[4+B(A-B)Ik(k-1)8(k-2,0)(p—M) \k-p
< >
1ol < ( 20-B) -3 -2 (k1) )7 kzntpn
EN....(4.8)
Corollary 4. Let the function f(z) defined by (1.2) be in
the class T,y (p,q,A,B,A,a,l,B)Then f(z) is in p-
valent convex of order n (0 <n <p) in |z| <r3, where
3

1
. {[A+B(l—/3)]p(p— 1)6(k—2,q)(p—n)}ﬁ
- lnfk2n+p _ _ _ _

A0-B)(1—a)sp—2,)(k—n)

Sharpness is hold, with the extremal given by (2.4).
5.Closure theorems
Theorem 5.Let y; >0 forj=1.2,...,mand YL iu; <1,
if function Body Math f;(z) defined by
fi(2) = 28 = ¥y w2 (ar; 2 0,j = 1,2,...,m)
...(5.1)
are in the class T, (p,q;A,B,A,a,l,B) for j=
1,2, ..., m then the function f(z) defined by

F) =27 - Z Z(u,ak»z

k=p+n \ j=1
Isalso inthe class T; (p,q;A,B,A,a,l,B)
Proof :
Since fj(z) isinthe class T,; (p,q,A,B,1,a,l,B) then
by theorem 1 that
Yi=p+nld + B(L = B)]k(k — DSk —

Bl —-a)b(p—2,9) ........ (5.3)
For every j=1,2,... m Hence

2,qQ)ay; < Al -

Yk=psnld + B = B)]k(k — DSk —

2, CI)(Z}?L Mjak,j)

= X2 My (ZrpenlA + B = B)Ik(k — 1)6(k -
2, q)ak])

Z [4+ B = Bk = DSk - 2,)a, Zu,
k=p+n =1
=A(-pA-a)s(p— Z,q)
From theorem 1, it follows that
f(2)eT; (p,q;A,B,A,«,l,B) and so this completes
the proof of theorem 5.
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Corollary 5.  The class T, (p,q,A,B,A,a,l,B) is
closed under convq linear combination
Proof :

Let the function f;(z)(j = 1,2) be given by (5.1) be in
the class T; (p,q,A,B,1,a,,B) . It is sufficient to
show that the function f(z) defined by

f@) =ufi(2)+ 1A -wf(2)
isintheclass T; (n,q,A,B,A,«,l,B) .But, taking m=2
, =M, c;=1—pu in theorem 5 , We have the
corollary
Theorem 6. Let f,,,_41(2) = 2z
and

= 7P _ A1-B)(1-a)8(p—2,q)
fk(z) z 2?:p+n[A+B(l—B)]k(k—1)5(k—z,q)z

kk=p+n

Then f(z) isintheclass Ty (p,q;A,B,A,«,l,B) if and
only if it can be expressed in the form

k=p+n-1
Where e = 0 and Xizpin-1 e = 1
Proof :
Assume that

f@@) = Zl?:p+n—1 i (2)

A1=-p)(1-a)6(p=2.,9)
SR p+nlA+BU-Blk(k-1)8(k-2,q)

Then it follows that

z (Z;‘i‘;pm[ms(l—ﬁ)]k(k—l)a(k—z.q))*
AL=-B)(1-a)8(p-2,9)

= Zp — ukzk ...... (63)

k=p+n
( AU-B)(1-a)8(p-2,9)
Z;o:p+n[A+B(l—B)]k(k—l)tS(k—Z,q

)“"Zk>

< Z Hi = (1 _:up+n—1) =1

k=p+n
Hence by theorem 1, we have
f@eTy (.q;A,B,2,a,Lp).
Conversely , assume that the function f(z)defined by
(1.2) belongs to the class
T, (p,q,A,B,A,a,l,B), then
A1A-p)(1-a)6(p—2,q) k

e = TR penlA+B =Rk (-1 (k=2,0)
Setting
_ IRtpenlA+BU-AIk(k-1)5(k~2,9)
Hie = -Pa-0sp-—2q K
Where

HUpin-1 = 1- ZI?:p+n Hi
We can see that f(z) can be expressed in the form (5.5)
,this completes the proof of theorem 6
Corollary 6.The extreme point of the class T,
(»,q,A,B,A,a,l,p) are the function f,(z) = zP and
— A-p)(A-a)é(p-2.,9)
fe@) = 20 = e S Pt Dotz
=Zp+n
6.Modified Hadamard products

[16]

Assume function f;(z)(j = 1,2) defined by (5.1) the
Hadamard product of f;(z) and f,(z) is defined by

(fi* f2)(2) = zP — ZI?:p+n ak,1ak,zzk=

(f1* f2)(@) ....(6.1)

Theorem 7.Let the function f;(z)(j = 1,2) defined by
(5.1) beintheclass T} (p,q,A,B, A, a,L,B),then (f; *

f2)(z) beintheclass T, (p,q,A,B, A, «,l,B),where
A=) (1-a)s(p-2,9)
T penlA+BU=R)@+D (p+n-1)S(p+n-2,q)

The result is sharp for the function f;(z)(j = 1, 2) defined

by

() — D A=p)(1-a)6(p—2,9) p+q
i@ =2 e e ez - 09)
Proof : Depending the technique used earlier by Schild
and Silverman [7], we must to show the largest o such
that

[oe]

2,

k=p+n
We have fi(z2) €T, (p.q,A,B,A,a,l,B)(=12)
then

c=1-

(neN) ....(6.2)

[A+B(I-P)lk(k-1))6(k-1,9)
A(-P)(A-a)s(p-2,9)

A0z < 1. (64)

[A+B(1-P)]k(k-1)8(k-2,9)
A(A-P)(A-a)5(p-2,9)

Qg1 <1 ... (6.5)

[oe]

2,

k=p+n
By using Cauchy Scharz inequality , we have

2.

k=p+n
It is sufficient to show that

[A+B(1-B)]k(k-1)6(k-2,q)
A-P)(1-a)é(p-2,9)

Az S 1 ... (6.6)

[A+B(1-B)]k(k-1)6(k-2,q)
A=-p)(1-a)é(p-2,9)

Ap10r2 < 1......(6.7)

1
1
1—g He1%k2 A=)V k1%,2

........ 6.8)
or

VA2 <
o .(6.9)

Hence in night of the inequality (6.9), it is sufficient to
prove that

AU-Ba-a)6(p-2,9) _ _(1-0)
[A+B(I-B)]k(k-1)8(k-2,q) ~ (1-a)

From (6.10) we have
A1-B)é(p—-2,9)(1-a)*

(k=p+n).....(6.10)

c<1- S T T R (6.11)
In the next , we defined the function R (k)by
_ 4 A-R)S(p-2,9)(1-a)?
R(k)=1 B kDo Uz (6.12)

A+B(-B)]k(k-1)8(k—2,9)
We note that R(k) is an in creasing function of k

(k=p+n), therefore , we caclud that
c<R(p+n)=
_ — —7)2
_ AU-B)6(p—2,9)(1-a) . (6.13)

[A+B(I-A)l(p+n)(p+n-1)S(p+n-2,q) "
The proof is completes
Putting B = 1 in Theorem 7, we obtain the following
corollary.
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Corollary 7. Let the functions f;(z)(j = 1,2)defined by
(1.2) be inthe class Ty (p,q;A,B, A, a,l) Then where
y=1

The result is sharp.

Corollary 8. For f;(z)and f,(z) as in Theorem 7, the

function

h(z) =z — ¥y Jap 1ar 2 2*
belongs to the class T;; (p,q;A,B, A, a,l).
This result follows from the Cauchy-Schwarz inequality
(6.7). It is sharp for the same functions as in Theorem 7.
Theorem 8. Let the functions f;(z) (j = 1,2) defined by
(5.1) be in the classT,; (p,q;A,B, A, a,l). Then the
function

h(z) = z° = ¥¥pin ’(azkylazkyz) z® (6.14)
belongsto the class T, (p,q;A,B,4,¢,l,B), where

The result is sharp for the functions f;(2)(j = 1,2)
defined by (6.3)

Proof. By virtue of Theorem 1, we obtain
A-PUa-as@-29) 1* >

Lic=p+n [A+B(-B)]k(k-1)8(k—2,q) k1=
o M-PA-0)s(p-29) 5 1
Zic=pin [A+BU-B)Tk(k-1)3(k—2.9) © k'l] =1...(6.16)
and
yoo A-pa-sw-20 1 2  _
k=p+n | [4+B(-B)lk(k-1)6(k~2.0) k2 =
o M-PA-a)s(p-29) , 1
Zic=p+n [[A+B(I—B)]k(k—l)é‘(k—z,q) k'z] <1...(617)

It follows from (6.16) and (6.17) that

o [ A-pU-ase-2a) 1*(.2 2
Yi=pn z[[A+B(z—ﬁ)]k(k—l)a(k—z.q)] (@%10%2) <

1Therefore, we need to find the largest { such that

A(-B)é(p-2,9)(1-7)
[A+B(-B)]k(k-1)8(k—2,q) —
3[ AL-B)s(p—2,9)(1-a)

2 L[A+B(1-B)1k(k-1)8(k-2,q)
that is, that

S (619)

A(1-B)8(p-2,9)(1-a)?
2[A+B(I-B)k(k-1)8(k-2,9) "

(=1-
since

. (6.20)

and Theorem 8 follows at once.

[17]

=B —2,9)(1 - a)®
[A+B(—PR)]k(k =16k —2,q)
is an increasing function of k(k = p + n), we readily
have
{=D(p+n)

D(k)=1—2

1o AL=B)o(p—2,9)(A —a)’
2[A+BU-Blp+n)p+n-1Ds(p+n-2,9)°

- (6.22)
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Abstract: Let G a finite group and X a subset of G. The local fusion
graph denoted by F(G,X) has a vertex set X with two distinct
element x£y e€X are adjacent if the group generated by x and vy,
<x,y>, is dihedral group, of order 2n, n odd. In this paper we prove
that the local fusion graphs for Mathieu groups and their
Automorphism groups has diameter 2.

Keywords: Double covers of Mathieu groups, Local Fusion Graphs,
Collapsed Adjacency Matrices, Diameters.

1. Introduction

Recently, the study of the action of the group on graph has
been shown to be effective when studying properties of a
group. Suppose that G a group with finite order and X class
of involution in G, the local fusion graph denoted by F(G,X)
has a vertex set X with two distinct vertices are connected if
the group generated by x and y, <x,y>, is dihedral group of
order 2n, n odd, so x conjugate to y in <x,y>. Studying the
structure  of groups by using the associated local fusion
graphs can be seen in [1]-[3] where X taken to be a
conjugacy class of involution. This paper deal with local
fusion graphs computationally , the computer algebra
systems Magma [4] and GAP [5] have been employed for
this purpose. Also, the group representation which define in
Magma and GAP can be obtained from the online Atlas of
Group Representations [6]. One can show immediately that
G induces graph automorphisms on the local fusion graph
F(G,X) (by conjugation) and acts transitively on the graph
vertices. For distinct X, y € X, a distance between x and y,
d(x,y), is a shortest path between x and y. Also the i" disc of
the element x X, Aj(X), is the set of vertices of F(G,X)
which has distance i from x, also, we may let Diam(F(G,X))
to be the diameter of F(G,X) . Let x € G the Centralizer
(the set of elements in G commute with x) in G of x G, (=
Cs(X)). Clearly , Ai(x) equal a union of certain Cg(x) -
orbits. Finally, we should mentioned that the notations of this
groups from Atlas [7]. The main goal of this paper is to
investigate the local fusion graphs for Mathieu groups and
their Automorphism and we prove computationally both
graphs have diameter 2.

2. Main Results

In the 19th century Emile Mathieu discovered the Mathieu
groups which are the first family of sporadic simple groups

(see [8], [9D).
In this paper we study
following groups:

o 2.My,.2 for the class 2D ( class of elements of
order 2) with size 1584,

o 2.M,.2 for the class 2F ( class of elements of
order 2) with size 2772.

the local fusion graph for the

As the rest of the classes divide into different classes with
isomorphic local fusion graph see [10]. Let t be a fixed
involution ( element of order 2) in either 2D or 2F. Since the
center of the above groups is cyclic group of order 2,
generated by involution say ¢, then by [6] one can see that tc
e t° Thus for any involution ne t°, the element tc has even
order in G. For that reason we assume that X=2D\{tc} or
X=2F\{tc}. Magma can provide a code to find the
permutation rank of Cg(t) on 2D or 2F which is equal to the
number of Cg(t)-orbits under the action on 2D or 2F by
conjugation, and this for the case 2D and 2F is 27 and 28,
respectively.

Let C be a Conjugate class in G so that( C={xcx*|xe G, ce
C}=c®) , then the set X defined to be the set of all element
X € X, such that txeX. Obviously, Cg(t) breaks up into
suborbits by its action on X¢ C all over the classes of G. And
by [11] the following formula gives us the size of the set X¢

x| = I Z Al A
‘ €z 3l Co - A0

relrr

1)
Where the sum is over all of the irreducible characters y(g)
of G, for g € G. The previous formula is calculated by GAP
using the code “Class Multiplication Coefficient”.
Thus the size of X¢ now available computationally.

Now we explain a procedure to find the A;(t)NX¢ for the
above groups. In order to do that we define the following

[18]
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algorithm which aim to find suborbit representatives. The
structure of this algorithm summarized as follows :

Theorem 2 The discs structural of local fusion graphs
F2M12.2, 2DY tc}) and F(2.Mj.2, 2F\{ tc}) can be
explain in the following tables:

Algorithm 1.
Input: G is either 2.M1,.2 or 2.M»,.2, t involution in 2D or
2F,respectively;

Tablel F(2.Mj,.2, 2D\{ tc})

i: r — Random(t® \{t}) Xe G- M) A2()

i3 Gt conjugacy

ii: set Reps — {r} and CR —— 1 ™. Classes

iii: for x € t°\{t} check if x ¢ CR (symbol for r ®), then 3A 20,20

iv: CR — CR U {x°"}; and Reps —> Reps U {x}. 3B 60

Output: The set of suborbit representatives. A 80,60

The next result cope with the diameters of the local fusion A 120120

graphs F(2.M1,.2, 2D\{ tc}) and F(2.M.2, 2F\{ tc}). jic ;i .

Theorem 1. The Diameter of local fusion graphs 6A 20,20

F(2.M3,.2, 2D tc}) and F(2.M,.2, 2F\{ tc}) equal 2 68 20
6CD 60,60

Proof: We have form the output of Algorithm 1 we find 27 10A 60,60

and 28 representatives for Cg(t)-orbits for the graphs A 120

F(2.My,.2, 2DV tc}) and F(2.M5,.2, 2F\{ tc}). Furthermore, 20A 120,120

the Magma code “Is Conjugate” is in service to find the A 120120

set of conjugacy classes such that Xc#¢.

From that we can get the G-classes such that Xc is non-empty
for both graphs:
{2ABC,3AB,4A,5B,6ABCD,10A,11A,12A,20A,22}

and {2ADE,3A 4CDF 5A,6ABC,10A,11A,22A}, G-conugacy Asl0) Az

respectively. Classes

The graph F(2.M3,.2, 2D\{ tc}) has 16 class make Xc#o. 3A 40,40

Obviously, Xzagsa11a3 in the A(t) and the reminder classes 5A 160,160

cannot be in A(t) this because they have even order if we 1A 320,320

multiply their representative by t. Now to check the reminder 2DE 520

classes lie in A,(t) we first find the whole A;(t) and then yTon) 0

search for a random element ye A, (t) and we see that there is

an element z in X¢ such that C is even class with property 4F 40,40,40,40

<y,z> is dihedral group of order 2n, n odd. 6A 4040

Thus: 6BC 80,80
Diam (F(2.M1,.2, 2D\{ tc})) =2. 10A 160,160

Similar approach could be utilized to prove that: oA 320,320
Diam (F(2.M,.2, 2F\{ tc})) =2 O

The proof of Theorem 1 computationally can be explained as
follows:
1. Use the magma code “Is Conjugate” break up
the set X into the non-empty classes.
2. Aq(t) representative is the one in X¢ such that C is
odd call this set of representative by SubRep. Then
3. Ai()=U, csypmen Conugate (Cs(£), x).
The reminder class named by RemSubRep
5. Foryin -Ai(t) there is an element x in RemSubRep
such that yx has odd order.
6. Ao()=U; cremsupr D Conugate (Cs(t). x).

e

The structure of the local fusion graphs F(2.My,.2, 2D\{ tc})
and F(2.M3,.2, 2F\{ tc}) are described in the next result.

Table 2 F(2.M5,.2, 2F\{ tc})

Proof: Theorem 1 shows that the diameters for both graphs
are equal 2. Also, the Gap code “Class Multiplication
Coefficient” may apply to find the sizes of X, which break
up to suborbits. To calculate the size of arbitrary suborbits
say X € Xc we divide the |Cg(t)| by |Cca(y(X)| which can be
done by using the magma code
“Order(Centraliser(G,t)/
Centraliser(Centraliser(G,t),x))”. O

3. The Collapsed Adjacency Matrices

For a given two Cg(t)-orbits, say oi, o; the collapsed
adjacency matrix for the local fusion graph F(G,X) has entry,
represent the number of the edges in the orbit o; that are
connected to a single vertex in the orbit o;. In the following
matrices we change each orbit in Table 1 and Table 2 with
A{{r) Increasingly, also we let 4i¢t)=t . The next tables 3,4

[19]
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presents the collapsed adjacency matrix for the local fusion
graph F(G,X), such that Table 3 gives the details for the
graph F(2.My,.2, 2DY{ tc}), whereas Table 4 provides the
information for the graph F(2.M,.2, 2F\{ tc}):

Table3: The Collapsed Adjacency Matrices for F(2.My,.2, 2D\{ tc})

Class | Ap |A] |A] |A] |AT |AF |AT |A] |4 |4 |4 |4 2 |4 |4° |4 |47 |4 2

_;j,jn' 0 20 20( 60 60 60| 120 | 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
_;j,ji 20 17 0 18 30 24 60 18 9 0 1 9 18 24 12 30 6 6 12 36 36 36 18 30
_;j,i 20 0 17 18 30 24 18 60 9 0 1 9 18 12 24 6 30 6 12 36 36 36 30 18
A i 60 6 6 20 15 19 30 30 0 6 0 8 24 14 14 20 20 24 12 36 36 28 40 40
_;j,i 60 10 10 15 24 23 42 42 8 6 0 8 24 18 18 14 14 8 16 32 36 36 26 26
..':'.E 60 8 8 19 23 28 36 36 4 2 0 8 12 16 16 18 18 16 16 36 28 36 34 34
_;j,E 12 10 3 15 21 18 40 28 5 4 1 9 20 17 17 24 18 13 17 34 35 35 28 40

0
A ; 12 3 10 15 21 18 28 40 5 1 9 20 17 17 18 24 13 17 34 35 35 40 28
0

A:‘; 15 12 12 0 32 16 40 40 13 0 0 24 12 12 28 28 24 8 32 32 32 32 32
AE 15 0 0 24 24 8 32 32 0 13 0 0 28 28 12 12 32 16 32 32 32 40 40
AE 30 10 10 0 0 0 60 60 0 0 1 0 0 0 0 0 0 0 60 60 60 60 60
Aﬂ' 2 6 6 16 16 16 36 36 0 0 0 13 16 20 20 20 20 16 16 56 24 24 36 36
A? 20 10 0 18 6 12 30 18 0 9 1 9 18 30 6 24 12 30 24 36 36 36 18 60
AE‘ 20 0 10 18 6 12 18 30 0 9 1 9 18 6 30 12 24 30 24 36 36 36 60 18
A,'_; 20 6 6 24 24 12 40 40 6 0 0 8 20 20 20 14 14 15 19 36 36 28 30 30
A,B, 0 8 4 14 18 16 34 34 3 7 0 10 20 19 16 18 12 14 18 32 34 34 36 48
A,? 0 4 8 14 18 16 34 34 3 7 0 10 20 16 19 12 18 14 18 32 34 34 48 36
A}D 0 10 2 20 14 18 48 36 7 3 0 10 14 18 12 19 16 18 16 32 34 34 34 34
A}l 0 2 10 20 14 18 36 48 7 3 0 10 14 12 18 16 19 18 16 32 34 34 34 34
A}: 0 2 2 24 8 16 26 26 6 8 0 8 15 14 14 18 18 24 23 32 36 36 42 42
A}! 0 4 4 12 16 16 34 34 2 4 0 8 19 18 18 16 16 23 28 36 28 36 36 36
A_H' 0 6 6 18 16 18 34 34 4 4 1 14 18 16 16 16 16 16 18 32 39 39 34 34
A}E‘ 0 6 6 18 18 14 35 35 4 4 1 6 18 17 17 17 17 18 14 39 44 31 35 35
A}E 0 6 6 14 18 18 35 35 4 4 1 6 14 17 17 17 17 18 18 39 31 44 35 35
A}T 0 3 5 20 13 17 28 40 4 5 1 9 15 18 24 17 17 21 18 34 35 35 40 28
A}B 0 5 3 20 13 17 40 28 4 5 1 9 15 24 18 17 17 21 18 34 35 35 28 40

[20]
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Table 4 : The Collapsed Adjacency Matrices for F(2.My,.2, 2F\{ tc})

Class [ 8 | 45 [o7 [8% (a7 [af [0 145 [ [ [f [ a8 [ [f a8 [.f® [ [ % [ [ 89 [.6F [ [° " [0
El.é 0 40 | 40 |160 |160 |320 (320 |5 20 |5 20 |80 (80 (40 (40 (40 |40 |40 |40 |80 |80 (80 (80 [160 [160 |320 |320
;1’1' 40 | 25 |0 56 (80 |112 (136 |0 2 12 |1 36 (32 |0 20 (16 |12 (32 |0 32 (36 |32 (32 |40 (72 |80 (144
;j,i 40 [ 0O |25 (80 |56 (136 |112 |O 2 12 |1 36 (32 |20 |0 12 (16 |0 32 (36 |32 (32 |32 |72 |40 |144 |80
,-j,i 16 | 14 |20 |77 |68 |130 (122 |4 10 |2 28 (38 |16 (12 |14 |16 (10 |18 (30 |30 (34 |36 (52 |40 |114 |102
,-j,i 26 20 (14 |68 |77 |122 |130 |4 3 10 |2 28 (38 |12 |16 |16 |14 (18 |10 (30 |30 (36 |34 (40 |52 |102 |114
‘ﬂi 302 14 |17 (65 |61 (125 |104 |6 3 9 2 27 (38 |19 (12 |13 |16 (10 |18 (29 |31 (35 |36 |57 |51 |126 |116
*':"E 322 17 |14 (61 |65 (104 |125 |6 3 9 2 27 (38 |12 (19 |16 |13 (18 |10 (31 |29 (36 |35 (51 |57 |116 |126
A 5 (0 |0 32 (32 |96 (96 |17 |0 0 0 64 |0 16 (16 (16 |16 (24 |24 (52 |52 (20 |20 (80 |80 |144 |144
y 20 | 16 (16 (96 |96 (192 |192 |0 1 0 0 0 0 16 |16 |0 0 8 8 0 0 0 0 64 |64 (128 (128
y: 5 |24 |24 (80 |80 (144 |144 |0 0 17 |0 0 64 (16 |16 (16 |16 |O 0 20 (20 |52 |52 |32 |32 |96 |96
4 20 | 8 |8 64 |64 |128 (128 |0 0 0 1 0 0 16 |16 |0 0 16 |16 |0 0 0 0 96 |96 (192 (192
Y- 80 | 18 (18 |56 |56 |108 (108 |16 |O 0 0 21 (16 |16 (16 |18 |18 (16 |16 (18 |18 (16 |16 |76 |76 |152 |152
y: 80 | 16 (16 |[76 |76 |152 |152 |0 0 16 |0 16 |21 |16 |16 |18 (18 (18 (18 (16 (16 |18 |18 |56 |56 (108 (108
A 40 | 0 |20 |64 |48 |152 (96 |8 2 8 2 32 (32 |37 |0 12 (12 |0 20 (32 |36 (36 |32 |64 (48 |152 (96
£ 40 | 20 |0 48 (64 (96 |152 |8 2 8 2 32 |32 |0 37 |12 |12 |20 |0 36 |32 (32 (36 |48 |64 |96 |152
£ 40 | 16 |12 |56 |64 |104 (128 |8 0 8 0 36 (36 |12 (12 |17 |16 (12 |16 (36 |32 (36 |32 (64 |56 |128 |104
40 40 | 12 |16 |64 |56 |128 (104 |8 0 8 0 36 |36 |12 (12 (16 (17 (16 |12 |32 |36 |32 |36 (56 (64 [104 |128
it 40 | 32 |0 40 |72 |80 (144 |12 |1 0 2 32 (36 |0 20 (12 |16 (25 |0 32 (32 |36 (32 |56 (80 |112 (136
A2 40 | 0 |32 |72 |40 |144 (80 (12 |1 0 2 32 |36 |20 |0 16 |12 |0 25 |32 |32 (32 (36 (80 (56 [136 (112
A 80 | 16 (18 |60 |[60 |116 (124 |13 |0 5 0 18 |16 (16 |18 (18 |16 (16 |16 |21 (16 |16 (18 |72 (68 |144 (140
pr 80 | 18 (16 |60 |60 |124 |116 |13 |O 5 0 18 |16 |18 |16 |16 (18 (16 (16 (16 (21 |18 |16 |68 |72 (140 (144
415 80 | 16 (16 |68 |72 |140 |144 |5 0 13 |0 16 |18 (18 |16 (18 |16 (18 |16 |16 (18 |21 (16 |60 (60 |124 (116
A6 80 | 16 (16 |72 |68 |144 |140 |5 0 13 |0 16 |18 |16 |18 |16 (18 (16 (18 (18 (16 |16 |21 |60 |60 (116 (124
.d-i-"_' 106 10 |18 (52 |40 (114 |102 (10 |2 4 3 38 (28 |16 (12 |16 |14 (14 |20 (36 |34 (30 |30 (77 |68 |130 [122
3.1:9 106 18 |10 (40 |52 (102 |114 |10 |2 4 3 38 (28 |12 |16 |14 |16 |20 |14 (34 |36 (30 |30 (68 |77 |122 |130
.d%‘g 302 10 |18 (57 |51 [126 |116 |9 2 6 3 38 (27 |19 (12 |16 |13 |14 |17 (36 |35 (31 |29 |65 |61 |125 |104
.d;fn 302 18 |10 (51 |57 (116 |126 |9 2 6 3 38 (27 |12 (19 |13 |16 |17 |14 (35 |36 (29 |31 (61 |65 |104 |125
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1. Introduction:

A function f =u+iv isa continuous and a complex
valued harmonic function in a complex domain C | ifu
and soV are real harmonic in C in simply connected

domain R c C, R is domain we canwrite f =h+g
, where the functions Nand g are analytic functions in

R . The function his called analytic part and the
function g is called co- analytic part of the function f

. A necessary and sufficient condition for f to be
locally univalent and sense — preserving in R is that
h'(z)|>|g/(z)|in R . See [6] .Now , we denoted by

RW (j) the class of functions defined by the following
form: f = h + g, that are harmonic multivalent and
sense — preserving in the unit disk defined as following
U={zeC:|7<1}. For f belongto Rw ( j)we

may express the functions h and g as following:

h(z)=2'+ i az , 9= i b, 2°

c=j+1 c=j+1
So,for jeN,A >0 ,the differential operator is defined
as following :

D" f(z) =D]"**h(z) + D" "g(2) - ()
When j=1, D} denoted of operator introduced by
[ 6]. Also denote
RW “(j) the subclass of RW (]) consisting of all the
functions f =h+g
where Nl and g defined as :

h(z)=2z' - i la|z°

c=j+1

b|<1. (1)

9@)=-3 b |o|<1. @

c=j+1

[23]

NOW, preith(zy =27+ 3 [+ A(c— j)lw(n.c, haz @

c=j+1
and
DIg(2) = > R+ Ac— DIw(nc, Dbz ©)
k=j+1
Where z(n,c, j) =[C+n_lj, neN,. (6)
n+j-1

Now , the multiplier transformation I (r,&) defined as
following :

I,(r,n)f(z)=1,(r,n)h(z)+1,(r,7)9(z) - (7
Where

|, (rnh(@) =2+ > W(e j.h) a2 ®)
and o

|, (r.m)9(2)=2+> W(c j.h) bz® )

j+nh
So, from (2) and (7) , the Hadmard product defined as
following :

(D7 15(rm) £ (2) = (D777 # 1 (r m)h(z) + (D77« 1 (r,1))g (2)

where (¢, j, n)" =(°+hj h>=0,r>0. (10)

(11)

where

(D1 (ra)h(@) =2+ S y(nc, j,n) aze- (12
k=j+1

And

(D1 (AN =2+ y(n.c, .7y bzes (1)

where

y(n,c, j,A)" =@ (n,c, j)*¥(c, j,A)" (14)
Now , we denote by £ (], 0,¥) the class of all functions

defined in (1) such that satisfies the following condition :

¥(D =1 (r,m) f (z))' .

Re 2 " > <>’
ae[((DQ*H «1,(r,m) f(2) —id —1)21*2}
7172
(15)
where
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0<0<2¥¥>0,1=20,A=0,r 20,2 >0.

We note that

£32°(1,0,1) = S;, H = £ studied by Silverman [ 9],
£99°(1,0,1) = £(1), H = £ studied by Yalsin and Oztiirk

[ 13 1

£39°(1,0,1) = N, (0),0 = class studied by Ahuja and
Jahangiry [ 11,

£79°1,01) =£7,H =£ class studied by authors in [7],
£70°(1, 0D =£5(j,0),p=j,0=a,H =£class
studied by ALshagsi and Darus in [11].

Also we see that for the analytic part the class
£00=(j,0,%), p=j,0=h,r =¥, u—e Wasstudied
by Goel and Sohi [8].

And so the operator | | (r,myWas studied by Tehranchin and

Kulkarni [12] , Atshan

[2], N.E. Choand T. H. Kim [4], N.E. Cho and Srivastava
[5], Saurabh Porwal [ 10] , J. J. Bhamar and S. M. Khairnar
[3]

So ,we denoted by 3= (§,0,%) the subclass of

£55° (], 0,¥) » Where
80 (1,0.¥) =RW(J) n£57%(],0.%)-

2.Cofficients Bounds:
In the following theorem , we introduced coefficients
bounds of a function in the class E£D0=(],0,%) -

(16)

Theorem 1:let ¢ _ g . such that the functions h and
g are defined in (1) . Let

> et ale- )¢ [l i e, j.m) (o] +b)
c=j

< j(2¥-0)

17)
Where i¥

“ ¥l
0<0<2¥,¥>0,1=20,A=20,r >0, >0.

Then f is harmonic multivalent sense preserving in U and f
belong to the class £5 (], 0,¥).

Proof: Let

¥(D 2 1 () T (2)

j2

C

A(z) =

= (21, f @) - i -D2"? |
z172

We using the fact Re{A(z)}> ¢ if and only if

|i—0+A@2)|2]|j+0—A(2)-

It suffices to show that

|[i—0+A@)|-|i+0—A(2)|=0-

So,

—“+

(18)

¥((Dy 1 (r, ) f (z))

j—O+

JZ‘
%[((D;ﬂ—l * | J-(I", n)) f (Z)))" —j(j _1)Zj—2:|
+ Zj72 ‘
o ¥((Dpi | jjg‘,h)) f(2)
jz
ae[((D;Hfl 1, E@) — i —1)2"’2J
_ . |

J+H¥—0+ i %[14‘/1((:— lr(nc, j,n)razi +

c=j+1

3 R ale- Dl i B
k=]

+ i ce[l+Alc— j)r(n.c, j,r) az +

c=j+1

+i ce[l+A(c— j)lr(n,c, j,n) b,z"!
J—¥+0— Z
c=j+1

-2

k=j

Z

1+ﬂ(c—1)] (n,c, j,m) a2z —

%[l+&(c— i)r(n,c,j,n)b, b,z
oL+ A= D (n.e, .y a2 -

ce[l+A(c— j)lr(n,c, j,n) bz}

=i

o oy _ o -
¥-0- 3" CT[1+A(C—J)]y(n,c,J,h) a2 -

c=j+1

-3 A bon,

c=j

>2

-3 lelee Dl Al D, iy a2 -

-3
- 2{j(¥—<>)— i cfi+a(c— j)][¥+\ae\j(c—1)]7(n,c, i) [a,|

= cfi+alc— DI¥+felic -l nc, j.m) b= 0-
c=j
So, the harmonic mappings

c

XC

f@=2" +Cz,;l cfi+ Alc— j)][¥+\ae\j(c—l)]7(n,c, j.h)" ?
S Ye —e- (19)
2 i A DY) e i m P

Where ,
Z B ‘+Z ly.|= i(¥—0) show that the coefficient

c=j+1

bound given by (17) is sharp.

The function of the form (19) are in £5, (], 0,¥) , because

[24]
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S i (2¥-n)
CZ:,: cfi+ alc— ¥ +elilc -Vl (n,c, i, m) (| + b)) [f@D=@+a)r—r ¥ [ee]1(i —1)
=pr+ Z [8 \+Z |Ve| = i(2¥ = 0). Proof:

Let f <a5r=(j,0,¥) » S0 we have

In the next theorem , we show that the condition (17) is j i

also a necessary for functions in the class 337 (j,0,¥) [f@]=a+a)n’ +n ; (ac[+ b))
Theorem 2:Let f = h+ g Where the functions h and g Then

are given by (4). Then a function f belong to the class 1f(2)|<@+a)ni +r (2¥ —n)
80 (,0,¥) ifand only if ’ [ -+ [eef i (G —1)]
And so, by similarity we have

S et ale- i)+l -0 m.c, .y (o) + b)) < j(2%-0)- 20) (2% 1)

= f(2)|=@+a)r' —r’
Where J¥ | | ' [¥+|ae|J(J_ )]

=y + i (] _1) 3. Extreme points:
0<0<2¥¥>0,1>0h>0r=>02>0 In this section , we shall obtain extreme points for the

Proof : The " if " part follows from theorem 1 , upon noting class 85, (], 0,¥) -

00 (1,0 %) < £5,7(],0,%) - For the " only if " part , Theorem 4: ¢ <50 (o) if and only if f can
assume that f belong to the class 850 (j,0,%) , then by be expressed by
(15) , we get f(2)= z (SchC + Bcgc) , (22)
¥((Drit e (r, h))f(z)) Ahere
jZJl hj(Z):Zj,hj(Z)=Zj—
Re " >0 i(¥—0)
n+j-1 T j-2 o
+&[((DA emi) - ii-ve-| JCEFICEN) CEE R 7O
2" (c=j+1j+2..)
e > SEh+ale- Dhnc, i) fagze — and p
Re =i 9. (2)=2" -
o  c¥ i i — J(¥ 0) B
[+ (e - Dln.c. j.7)|b|z o
Z : ot A - DI¥ +felilc -Vl (n,c, .7y

- i ec(c—DA+Alc— j)r(n.c, j.n)|a |z — (c=i+1j+2..)

c=j+1

i - And
-3 @c(c-Da+Alc— j)(n.c j.2) bz .
; o f(z)=3 (s.+B.)=1 ,s, =0
We choosing Z to be real and s0 g = ] and letting o=l
] B,.=0,(c=j+1,j+2,...)-
z — 1, we get required result . | ticular - the ext t5 of 37 (]
In the following theorem , we obtain distortion bounds n particular , the extreme points of 857 % ( j, 0,¥) are
for the functions in the class  3757=(j,0,¥) - {h, }and {g_}.
Corollary : If ¢ B0 (j,0,¥%) . Then
> (ad+lb) Proof:
(21) We can write f (z) as following
j(2¥ -0) . . _
= A D+ -Dp e Ay f@=2 (Sche +B.g.)= > (S, +B,)z! —
=p c=j+1
Theorem 3: Let f belong the class &y, (], 0,¥) and B j(¢¥—0)s, e
Iz =r>1,then c[1+ﬂ(c—1)][¥+\ae“(c D (n,c, j,n)"
z 0)B, —
L (2¢¥—n) G c
|[f(2))<=@+a)r’ +r’ ¥ i() —1) kz;‘ clr+ a(c— J)][¥+\ae\j(c D (n.c, j.n)" @)

And

[25]
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:Zp_i J(¥ O)S

S el alc— ¥ +|Elilc - (n,c, j, h)

= j(¥-0)B,
= ci+alc— DI¥+[eilc-D(n,c, j.m)"

=z° —Z Az° —ZC(Z)

c=j+1

Then from theorem 1 , we have

i cli+ a(c— j)][¥+\ae\j(c—l)];/(n,c, i.n)" A —

c=j+1

_2 cli+ a(c - j)][¥+\ae\j(c-1)]y(n,c, j.m)C,

SERE PIRCRLRELY
=j(¥-0)1-5s.)=< j(¥~-0)
Then f eT)*(p,a,7).

Conversely, let f belong to the class 8% (1, 0.%) -
Put

o _clralc— ¥ +elic D n.c. iny

‘ i(¥-0) Bl
(c=j+1j+2,..)
And
o, - i+ ale— Dl +l=lic - e im’
c (¥ <>) C
v (c=j+1, j+2,...)-
We obtain

f(2) = i (s.h, +C.g,)% required .
c=j
So the proof is complete.
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Abstract: In this article a mathematical model that describes the
spread of infectious disease in a population is proposed and
studied. This model describes the spread of cholera disease with
external source of disease and nonlinear recovery function h(l),
The local and global stability of the model is studied. Our results
suggest that the basic reproduction number itself is not enough

Keyword: Cholera disease, global stability, external source,
recovery function.

1. Introduction:

Cholera is a dangerous disease caused by the bacterial
Vibrio Cholera. It infects the small intestine. There are
many types (strains) of the V. C. Bacterial. Some of
them cause more serious illnesses than others. Because of
this, some human who get cholera have no symptoms;
others have symptoms that are not very bad, and others
have very bad symptoms [1-4].

Cholera is a very old epidemic. It still affects many
human throughout the world. Estimates from 2010 say
that between 3 million and 5 million people get Cholera
every year, and 58000-130000 people die from the disease
every year. Today, Cholera is called a pandemic.
However, it is most common in developing countries,
especially in children [5-8]. Cholera is an acute intestinal
infection caused by the bacterial V. C. Its dynamics are
complicated by the multiple interactions between the
human host, the pathogen and the environment which
contribute to both direct human-to-human and indirect
environment to-human transmission pathways [9].

Figure 1:_Simplified life cycle of cholera disease

to describe whether cholera will prevail or not. Finally, the
global dynamics of this model is studied numerically.

Below, we briefly review some representative
mathematical models proposed by various authors. In
2001, [10] extended the model of Capasso and Paveri-
Fontana. He added an equation for the dynamics of the
susceptible population. And he studied the role of the
aquatic reservoir in the endemic and epidemic dynamics
of Cholera.

In [11], Pascual et al., Generalized Codeco model by
including a 4th equation for the volume of water in which
the formative live following [10]. In 2009, Richard I. Joh
et al., considered the dynamic of infectious disease for
which the primary mode of transmission is indirect and
mediated by contact with a contaminated reservoir [12].
Also, Ali and Zhou studied the model for the Cholera
disease [13]. In this article is organized as follows. In
Section 2, we introduce the generalized model and state
the necessary assumptions. In Sections 3, we find the each
equilibrium point in this model with derive the B. R. N.
using the next-generation matrix approach. In Section 4
and 5, we show the local and global stability of the all
equilibrium points. Finally, in order to confirm our
obtained results and specify the effects of model's
parameters on the dynamical behavior, numerical
simulation of the cholera model is performed in Section 6.

2. The mathematical model:
In this articale, we suppose the epidemic model descript
the cholera disease by the following equations:

s_p £SMBO e
S=A- B WO =450 S W)

S ‘
|:%)Blit()t)JrﬂlS(t)'(t)*ﬁzs(t)*(r+ﬂ1+0)|(t)*|h(|) )

B =7l (t) - 14 B(t)

[27]
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For all time t, the population are divided into three
classes: a susceptible class S(t), an infectious class I(t) and
the virus class B(t), that is to say N=S(t)+I(t). All the
parameters are positive constant, with descript in the
following table:

Table 1: Description of parameters and frequently used

symbols.
Parameters description
A The birth rate
Bo, py The infection rate
P2 The infection rate by external source S, >0
s H2 Dead rate
r The treatment rate
) The disease related death
h(l)=m . .
M A+ wl | The recovery function, with m,v and w>0
n The new infected members from | class
K The carrying capacity

Clearly, the equations of system (1) are continuously

differentiable. In fact there is Lipschizan function on RE.
Therefore, the solution of system (1) with non-negative
initial conditions is uniformly bounded as shown in the
following theorem.

Theorem 1: Each the solutions of system (1), which are

initiate in Rf, are uniformly bounded.

proof: Let (S(t),I(t)), be any solutions of the system (1)

with non-negative initial conditions (S(0),1(0)). Since

N=S(t)+1(t), then N =S+ 1, This gives: N + 4N < A
Now, by using Gronwall lemma [1], it obtains that:

N(@) <2 a—e 4ty 1 N(0)e 4t
M
Therefore, N(t)s%l, as t >, hence all the

solutions of system (1) that in Rf, are confined in reign:
Ty ={(S,1)eR?:N< Aﬂl}' And the feasible region
of pathogen population for system @
isTy = B:OsBs”y . Definel =I'y xI'7 .

z={ i ﬂz} HxIz

Let Int.T", denote the interior of I". It is easy to verify that

the region T is positively invariant region with respect to
System (1), hence, system (1) will be considered
mathematically and epidemiologically well posed inT".

4. Local and Global Stable Analysis of E,
In this part, the stable analysis of D. F. point

E, (%l ,0,0) of the system (1) as shown in the following

theorems.

[28]

Let Int.T", denote the interior of I". It is easy to verify that
t

3. Existence of Equilibrium Point
In system (1), there are always two biologically feasible
points, namely the infection-free  equilibrium

point E, (S,,0,0) = (%1,0,0) . This point exists when the

basic reproduction number R, <1, where:

- BofinA @
Kpapia(r + 1+ +h(0))
The positive equilibrium point E;(Sq, 11, By) exists when
where:

5 = A(Kpg +1l1) 3)
nP1 + (K +nl1)[ Ay + B2 + pal
|
B =TL (4)
H2
And 14 is the positive solution of the following equation:
4 3 2
Dyly + Dal} + D3l + Dyl + D5 =0 (5)
Here:
D, = ﬁlAnZW >0

Dy = n[A(B.w + o LKW + By + BiK oW + Bomw)
=n(M(B, + B+ Bo + 1) +W(r + 11+ 5)
(Bo +Bo+ B2+ )]

D3 = Al 2K 2w+ (B + Praigy + BuigVK + 2Bp1pwK + )]
+(BL+ B+ 1)V + pp KW+ 2 K[ B gy K + (1 + p1g +6)
X (BoiV + B WK + WK (B + B2 + 111)]

Dy = o K[AB + 12 BV + 2oV + Po 1o KW)
—(r+m+ 5)(/8077V+(27]V+ﬂ2KW—/12 KwW)(B1+ B2 +14)

Ds = 2K 2V[AB — (r + g + S) By + P + 1))

Clearly, equation (5) has unique positive root by |4 if and
only if Dj <0, i=234,5.

Theorem 2: The disease-free equilibrium point of
B (%1 ,0,0) the system (1) is local asymptotically stable

provided that:
P1Se <+ 1+ +h(0) (6)
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8.5, <min [K (B + 10)2. KBS By + 1) S, @
—(r+ g1 +8+h(0)), Ketp (81Ss = (r + sy + 5 +h(0))}
Proof: The Jacobian matrix of system (1) at E, that

denoted by J(E,)and we can be written as:

~ (B2 + 1) - BiS, PeSo

J(E.) = B2 B1S. —(r+ g+ +h(0)) ﬁos%
0 n —H2

Clearly, the characteristic equation of the Jacobian matrix
J(E,) of the system (1) at the disease-free equilibrium
point E, is given by pa A1/12 +MApA+A3=0
Here:

A =—[agq +ap +agz3]

Ay =[ag1ap —ajpap1 + 222833 — 223232 +a11233]
Ag =—[agzajpan) +a11a3a32 —a11222833 — 8218322131
Further:

A=~Ahy—Ag

Now according to (Routh-Hurwitz) criterion

E, (%1 ,0,0) will be local stable provided that
A >0,i=13and A=A Ay — A3 >0 .Clearly:

A >0,i=13 with A=AA)—Az provided that
condition (6-7) holds. Hence the proof is complete.

Theorem 3: Let the disease-free equilibrium point E, of
System (1) is local stable. Then the basin of attraction

of E,, sayB(E,) < Rf, it is global stable provided the
condition is satisfied:

(/”o% LgtAl +ﬁ2)30 +l <(%(S -9)° 8)

+(r+ 1 +5+h(0)| + uoB)
Proof: Consider the following positive definite function:

o

v1=(8—so—solnsi]+|+5

Clearly, V1:R4§—>Ris a continuously differentiable
function such that

(B g Al o )

V1(S.,0,0) =0,andV4(S,1,B)>0,v(S,1,B) = (S,,0,0).
Further we have:

V1=(S_S°j3+ I +B

S

By simplifying this equation we get:
V1= (S =8.)7 ~(r + s + 54 N(0)) - 2B

+[ﬂ+ﬁll +ﬂ2]SO +7l

K+B

Obviously,Vy <0 for each initial point and then V; is a

Lyap. function provided that condition (8) hold. Thus
E. is global stable in B(E,) , and that complete the proof.

5. Local with Global Stability Analysis of
Positive Point E;

In this part, the local and global dynamics of system
(1) is studied by use the Ruth-Hurwitz and Lyap. function
as shown in the theorems.

Theorem 4: The positive point E;of the system (1) is

local stable if:
ﬂ181<r+/11+5+h(|1)+% (9)
1
nB.S1K < min.{(K +B)?L2, B1S1(K +By)2Lx
dh
(S~ 5+l + S,
o (K + By)2 (BySy — (1 + g +5 +h(ly) +%>}
.............. (10)

Where: L=—BL ., g1+ By + 1
K+Bl

Proof: The Jacobian matrix of system (1) at Ejthat
denoted by J(E;) and can be written as:

- G.51K
— S,
< Vo

J(E) = (ﬂo%+31+ﬂ1|1+ﬂ2) ﬁlsl—(r+#1+5+h('1>+dh('1)lldll) ﬁ081%|<+81)2

0

n —H2

Clearly, the characteristic equation of the Jacobian matrix
J(Eq) of the system (1) at the positive point Ejis given

by 4% +ByA% +ByA+Bg =0

[29]
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Here:
By =—{byq + b +b33]
Bo =[b11b2p —b1obo1 +boobas —boghsy +by1bs3]

B3 = —[b33byobo1 +by11023037 —by1bob33 —bo1bzoby 3]
Further:

A=B1By -Bj3
Now according to (Routh-Hurwitz) criterion Eqwill be
local stable provided thatB; >0;

By >0andA=B;By, —B3 >0. Clearly, Bj >0,i=13and
A =B1By —B3 >0, provided that condition (9-10) holds.
Hence the proof is complete.

Theorem 5: If the positive point Ejof System (1) is

local stable. Then it is global stable if satisfy the
following conditions:
PS1<r+m+5+X (11)

2
(PR gyt Al o=t | <L+t 5+ X~ f151)

........... (12)
2
55K
((K+B)(K+Bi)] <k (13)
2
(—(K+§;(SKK+81)+’7J <up(r+m+6+L-pS)
........... (14)

mv
(v+ml)(v+wlq)
Proof: Consider the following positive definite function:

v, -6 —281)2 NG —2|1)2 . (8—281)2

Clearly, V2:Rf—>Ris a continuously differentiable

Where: X =

function such that Vo (S1,11,B1) =0
andV, (S,1,B) >0, v(Sq,11,B1) #(S,1,B) . Further, we
have:

Vo =(S—51)S+(I - 1) +(B—By)B
By simplifying this equation we get:

V =q171(5—81)2 ~12(S—Sp)(1 - Il)—q%(l ~1y)?
(s -5 +ara(s - S1)(B-BY) -2 (B-By)?

~322(1-11)? + gaa(1 - 11)(B- B) - 22 (B~ By)?

[30]

With:
. BoBr
=L; = + Sl + - AS
11 12 K+B A1+ B2 - A
U2 =F+ ++ X —BS1; 13 =B.SK(K+B)(K +By)
_ 5K
033 =H2 ;023 = n

—_—— ¢
(K+B)(K+Bq)
Therefore, according to the conditions (11-14) we obtain
that:

2
Z s{ Ah(s-sp)- 422 —Il)}

2
| o e oy 933 5
{ , (85— — (B Bl):l

2
{ q%(l ~1p)+ q%(B—Bl)}

Clearly, \/2 <0and then Vs is a Lyap. function provided
that the given conditions (11-14) hold. Therefore, Ejis
global stable.

6. Numerical Simulation of system (1)

In this part, the dynamical behavior of system (1) is
studied numerically. The objectives of this study are
confirming our obtained analytical results and understand
the effects of some parameters on the dynamics of system
(1). Consequently, system (1) is solved numerically for
different sets of initial conditions and for different sets of
parameters. It is observed that, for the following set of
hypothetical parameters that satisfies stability conditions
of all equilibrium points (Ej,i=o,1) system (1) has a
globally asymptotically stable disease-free equilibrium
point as shown in following figures.

(a)
5500

5000

4500
4000
3500

= 3000
2500
20
1500

1000

50 L . L " L L L " L
o 1000 2000 3000 4000 5000 E000 TOOD 8000 9000 10000
time
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ErIJ

Figure 2: The unique point of system (1) is global stable.
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Time
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In this case, A=500, £, =0.00001, B;=0.00001, B, =0,
17=0.01, 14 =0.1, u»=0.3,r=0.05 m=1, v=2, w=0.1,
K=5, 6 =0.01. And the trajectories of system (1)
approaches to E, =(5000,0,0), from three initial
conditions are (2500,1000,500), (1000,2000,2000) and

S

(500,500,1000).

-

|Jﬂ un jlb Klu ﬂlﬂ UIM UL uxu lLU 10000

Time

IJM UM JlL &1” ﬂlﬂ UlM uL &1” lLU 10000
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Figure 3: The positive point of system (1) is global
stable. In this case, A=500, S, =0.001, $;=0.0001,
f2=0.0001, 7=0.01, 14 =0.1, up=0.3, r=0.05 m=1,
v=2, w=0.1, K=5, § =0.01. And the trajectories of system
(1) approaches to E;q=(1600,2075,95), from three initial

conditions are (2500,1000,500), (2000,500,2000) and
(500,2000,1000).

Now, we choose the set of hypothetical parameters
A=500, p;=0.0001, p,=0.0001, #=0.01, z4=0.1,
2 =0.3, r=0.05, m=1, v=2, w=0.1, K=5, § =0.01. but we
change the infection rate value (,=0.1,0.3,0.5)

respectively, we get the trajectories of system (1) still
approaches to positive point but the number of S(t)
decrease while the numbers of the I(t) and virus class
increases.
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sm
—

—&n

] 1000 200 00 4000 5000 5000

Figure 4: The trajectories of system (1): (2) S, =0.1, (b)
S, =0.3, (c) B,=0.5.

Now the effect of external sources in the environment
on the dynamics of system (1) is studied by solving the
system numerically for the parameters values S5 =0.1,

0.3, 0.5 respectively, in following figure:

] 1000 000 300 000 5000 £000
Tt

—sp

=

] 1000 2000 _xm 000 000 5000
Figure 5: The trajectories of system (1), we use, A=500,
S, =0.001, p;=0.0001, 7=0.01, z=0.1, up=0.3,
r=0.05, m=1, v=2, w=0.1, K=5, ¢ =0.01, with (a)

B> =0.1, (b) B»=0.3, (c) B =0.5.

According to Figure (5), as the spread of disease by
increases the external sources parameter, the trajectory of
system (1) approaches to the positive point. In fact as
poincreases it is observed that the number of S(t)

individuals decrease and the number of I(t) and virus
individuals increases.

Clearly, we present the effect of treatment rate that is
by change value for r=0.1, 0.3, 0.5 respectively, we get
the trajectories of system (1) still approaches to positive
point but the number of I(t) and virus individuals
decreases while the S(t) individuals is increases.
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0 1000 2000 3000 4000 5000 EQO0 7000 B0 9000 1D0CO

Time:

Figure 6: The trajectories of system (1), we use, A=500,

f,=0.001, B;=0.0001, p,=0.0001, =0.01, z=0.1,

42 =0.3, m=1, v=2, w=0.1, K=5, § =0.01, with (a) r=0.1,
(b) r=0.3, (c) r=0.5.

Similar results are obtained, as those shown in case of
increasing r, in case of increasing the recovery rate, that
means increasing m as shown in the following figures:

2600
2000
1500 ¢
&
1000
S
L
GGDK —
ol .

[33]

] 1000 200 3000 000 000 B000

Figure 7: The trajectories of system (1), we use, A=500,
S, =0.001, p;=0.0001, B, =0.0001, 7=0.01, z=0.1,

11> =0.3, r=0.05, v=2, w=0.1, K=5, § =0.01, with (a)

m=2, (b) m=3, (c) m=7.

References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

Barbalat, 1., System d' equation differentially d'
Oscillation nonlinear. Rev. Roum. Math. Pure.
Appl. 4, 267-270, 1959.

Finkelstein, Richard A., "Chapter 24: Cholera,
Vibrio cholera and Other Pathogenic Vibrios." In
Medical Microbiology. Galveston, Texas
University of Texas Medical Branch at
Galveston, 1996.

Tudor V., and Strati 1., Smallpox, Cholera,
Abacus Press, Tunbridge Wells, 2012.

Lozano R, Naghavi M, et al. "Global and
regional mortality from 235 causes of death for
20 age groups in 1990 and 2010: A systematic
analysis for the Global Burden of Disease Study
2010". Lancet 380 (9859), 2095-128, 2012.

Reidl J and Klose KE. "Vibrio cholera and
cholera: Out of the water and into the host".
FEMS Microbiology Reviews 26 (2): 125-39,
2002.

Capasso, V., Paveri-Fontana, S.L., A
mathematical model for the 1973 cholera
epidemic in the European Mediterranean region.
Rev. Epidemiology. Sante 27, 121-132, 1979.

WHO. International travel and Health, 2010.
Geneva: World Health Organization, 2010,
[Available from:

http://www.who.int/ith/chapters/ith2011chap6.pd
f].

WHO. Guidelines for cholera control. Geneva:
World Health Organization; 1993 [Available
from:



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS

http://whqlibdoc.who.int/publications/1993/9241
54449X.pdf].

[9] E.J. Nelson, J.B. Harris, J.G. Morris, S.B. Calder
wood, and A. Camilli, Cholera transmission: the
host, pathogen and bacteriophage dynamics, Nat.
Rev.: Microbiology 7, pp. 693-702, 2009.

[10]C.T. Codeco, Endemic and epidemic dynamics
of cholera: the role of the aquatic reservoir, BMC
Infectious Diseases, 2001.

[11] Pascual M., Bouma M.J., Dobson A.P., Cholera
and climate: revisiting the quantitative evidence,
Microbes and Infection 4 (2), 237-245, 2002.

[12]Joh R.l., Wang H., Weiss H., Weitz J.S,,
Dynamics of indirectly transmitted infectious
diseases with immunological threshold, Bulletin
of Mathematical Biology 71, 845-862, 20009.

[13]Ahmed A. and Xueyong Zhou, On the
Dynamical Behaviors of a Cholera Model with
Holling Type Il Functional Response, Journal of
Al-Nahrain University, March, 2016.

[14] Castillo-Chavez C, Song BJ. Dynamical models
of tuberculosis and their  applications.
Mathematical Biosciences and Engineering,
1,361-404, 2004.

[34]



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS

On T-extending modules

'Bahar H. Al-Bahrani and “Entisar A. Al-Dhahari
1University of Baghdad, College of Science
2 College of Science, University of Baghdad

'albahranibahar@yahoo.com ,’eahmed.math@gmail.com

Abstract

In this paper we introduce the concepts of the T-direct sum and T-extending modules and we give some basic properties of
these types of modules. Also we define the relations a+ and S+ on the set of submodules containing T of a module M

and we give some basic properties.

Keywords: extending modules, T-essential module, T-closed modules

1- Introduction

In this paper, all rings are associative with identity and
all modules are unitary left R-modules. Recall that a
submodule A of an R-module M is essential submodule
of M{denoted by A < . M}, if for every B < M,
A N B=0 implies that B = 0.

A submodule B of a module M is called complement for
a submodule A of M if it is maximal with respect to the
property that A N B = 0. More details about essential
submodules and complement can be found in [1] .

A module M is an extending module (denoted by
CS- module), if every submodule of M is essential in a
direct summand of M, see [2, 3].

Let M be a module. Recall the following relation on the
set of submodules of M : A o B if there exists a
submodule C of M such that A<, Cand B <, C, see
[4]. Let M be a module. Recall the following relation on
the set of submodules of M: AgBif AN B <, Aand
A N B <, B, see [4]. In [5], the authors introduced the
definition of T—essential (complement) submodules as
follows: Let T £ M, a submodule A of M is called
T-essential submodule of M {denoted by A < 1 M},
provided that A £ T and for each submodule B of M,
A N B < T implies that B < T. A submodule B of M is
called a T —complement for a submodule A in M if B is
maximal with respect to the property that AN B <T. In
[6], we introduce the definition of T-closed submodules
as follows: Let T, A and B be submodules of a module
M . A'is called a T-closed submodule of M (denoted by
A <1, M), if A<+, B impliesthat A+ T = B, for every
submodule B of M.

In section 2 , we will introduce the definition of T-direct
sum modules as follows : Let T, A and B be submodules
of a module M. M is called T-direct sum of A and B
(denotedby M=A ®1B). IfM=A+Band ANB<T.
In this case, each of A and B is called a T-direct
summand of M .We prove that Let T, A and B be
submodules of a distributive module M. If B is a
T-complement for Ain M , then A @1 B < 1,s M, see
proposition (2.11). Also we introduce the definition of
T-extending modules as follows:

Let T be a submodule of a module M. We say that M is
T-extending module (denoted by T-CS modules) if
every submodule of M which contains T is T-essential in

every T-closed submodule of M which contains T is a
T-direct summand of M, see proposition (2.15).

In section three , we will define the following relation :
Let A and B be submodules of a module M with T < A
and T < B . We say that A ar B if there exists a
submodule C such that A <, Cand B <t C.

Also we define the following relation : Let A and B be
submodules of a module M with T < Aand T < B . We
say that ABr Bif ANB< 1, Aand A N B < 1, B.
We prove that : The S is an equivalence relation , see
proposition (3.10).

2. The T-extending modules

In this section , we will introduce the concepts of the
T-direct sum and T-extending modules and we
illustrate it by some examples. We also give some basic
properties of these type of modules.

Definition (2.1): Let T, A and B be submodules of a
module M. M is called T-direct sum of A and B
(denotedby M=A @®+B). IfM=A+Band ANB<T.
In this case , each of A and B is called a T-direct
summand of M .

Let M be a module . Clearly that every direct summand
of M is a T-direct summand. And when T = 0, a
submodule A of M is a T-direct summand of M if and
only if A is a direct summand of M.

Examples (2.2):

(1) Consider the module Z as Z-module and let T = 6Z .
Clearly that Z = 2Z @+ 3Z . But 2Z is not a direct
summand of Z . Now let T =47 . 2Z N 3Z = 6Z <« 47 ,
then Z is not 4Z-direct sum of 2Z and 3Z.

(2) The Z,, as Z-module. Let T = {0,6},

A = {0,2,4, 6,8,10} and B ={0,3,6,9}. One can easily
show that A is {0,6}-direct summand of Z;, , and A is
not direct summand of Z;5 .

Proposition (2.3): Let T, A and B be submodules of a

module M such that¥= %EB % .ThenM =A & B.
M

Proof: suppose that == %@%.ThenM:A+Band
%ﬂ%:A2B:0andhenceAﬂB:T.Thus
M=A®&:B

Note: The converse of proposition is not true in general ,
for example . Consider the module Z as Z-module and

(35]
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D is a T-direct summand of M. Thus M is a T-extendin .
Remark (2.16): Let T be a submodule of M. If T = 0
then M is T-extending if and only if M is extending.
Proof: Clear.

let T=A=4Z,B =3Z. Cleary that M =A &1 B . But

ANB=12Z#T. Thus% is not the direct sum of % and
B

T

Remark (2.4): Let T , A and B be submodules of a
module M suchthat A< B <Mand T<B .IfAisa
T-direct summand of M , then A is a T-direct summand
of B.

Proof: Let A be a T-direct summand of M, then
M = A &+ C, for some submodule C of M. Since A<B,
then by modular law, B=M NB=(A®+ C)NB =
A @+ (CNB). Thus Ais a T-direct summand of B.

A module M is called a distributive module if
ANB+C)=(ANB)+(ANC), for all submodules
A, Band C of M. See [7].

Lemma (2.5): [8] Let A, B and C be are submodules of
a module M . Then the following statement are
equivalent :

(ODAN(B+C)=(ANB)+(ANC).

2) A+BNC)= (A+B)N(A+C).

Proposition (2.6): Let T, A and B be submodules of a

distributive module M such that M = A &+ B , then
M_ AT BT

T T T

Proof: Assume that M = A @1 B .Then M = A+2+T =

A+T

.Since ANB<T, then(AﬂB)+T<T

Smce M |s a distributive module, the (A +T) N (B + T)
= (A N B + T < T, by lemma (25). But
T<A+T)NB+T),therefore A+T)NB+T)=T.

A+T B+T M A+T B+T
Hence 2 mi_o Thus——Lea i

Proposmon (2. 7) LetT, A and B be submodules of a
module M such that A <B . If A is T-direct summand of
B and B is T-direct summand of M , then A is T-direct
summand of M.

Proof: Suppose that A is T-direct summand of B , then
B=A®&: C , where C be asubmodule of B . Since B
is T-direct summand of M, then M = B &1 D , where D
be a submodule of M. Implies that M = (A &1 C) &1 D
. Hence M = (A+C)+D=A+(C+ D) and
AN(E€ND = QANOCDND < T. Then
M =A &+ (C &1 D). Thus A is T-direct summand of
M. Proposition (2.8): Let T, A and B be submodules of
a distributive module M such that M =A @1 B .Then B +
T is a T-complement for A+ T in M.

Proof: Suppose that M is a distributive module and

M=A@:B.Thenby (26), = = A;TeB” Thus

B + T is a T-complement for A+T in M, by
[9,Coro.3.5,p. 907]
Corollary (2.9): Let T, A and B be submodules of a
distributive module M such that M = A @1 B . Then
A+ T is T-closed submodule of M.

2o &b —,

Proof: Assume thatM AD+ B then—— - -

by (2.6). Then 2 T is closed in T by [1] .Thus A+ Tis

T-closed submodule of M, by [6 , Prop. 29 , p.
1684].

B+T

[36]

a T-direct summand of M. we prove that : Let M be a
module. Then M is T-extending module if and only if.
Proof: Let M = A &+ B, then Ais a T-closed in M by

(2.9). Since T< A, then 2 T is closed submodule of —, by

[6, Coro. 2.10, p. 1684].

Proposition (2.11): Let T, A and B be submodules of a
distributive module M . If B is a T-complement for A in
M, then A®+1 B <1 M.

Proof: Let B be a T-complement for A in M, then
A N B <T. Let C be a submodule of M such that
(A ®r B) N C<T. Since M is a distributive module,
then (ANC) &t BN C) < Tand AN (B &7 C) =
(ANB) @&t (ANC)<T. But B is maximal with respect
to property that A N B < T, therefore B + C = B. Implies
that C<B.Hence C=C N B <T .Thus A @1 B <1es M.
Corollary (2.12): Let T, A and B be submodules of a

distributive module M. If% is a relative complement for
%in%thenAEBTBSTesM.
Proof: Suppose that %

. . A
is a relative complement for 7 in

%, then B is a T-complement for A in M, by [9, Prop.

3.4, p. 907]. Hence A @+ B < 1, M, by (2.11).
Proposition (2.13): Let A, B, C and D be submodules of
a distributive module M such that T, A, C < B . If
M =B @&+ D and C is a T-complement of A in B, then
C @+ Disa T-complement for A in M.

Proof: Let M = B @&+ D and C be a T-complement for

AinB. ThenM=B+D,BND<Tand ANCC<T.
Since C<B,thenCND<BND<T. As A<B, then A
N D <B NDX<T. But M is a distributive module, hence
we obtain AN (C &+ D)=ANC)BT (AND)<T
.Now let L be a submodule of M such that Cé&t D <L
ANLST.Then(LNA)NB=(ANL)NB<
T. But C is maximal with respect to the property that A
N C <T, therefore, C=LNB. ThusL=MNL=(B
®@rD)NL=BNL) Bt (DNL)=C &t D. Which

means C @1 D is a T-complement for A in M.

and

We introduce the following definition

Definition (2.14): Let T be a submodule of a module M.
We say that M is T-extending module (denoted by T-CS
modules) if every submodule of M which contains T is
T-essential in a T-direct summand of M.

Proposition (2.15): Let M be a module. Then M is
T-extending module if and only if every T-closed
submodule of M which contains T is a T-direct summand
of M.

Proof: Suppose that M is a T-extending module and let
A be a T-closed submodule of M such that T < A . Since
M is a T-extending module , then there exist a T-direct
summand D of M such that A < 1 D . But A is a
T-closed submodule of M , therefore A + T = D .Thus
A=D.

Conversely, let A be a submodule of M such that T <A .
So there exist a T-closed submodule D in M such that
A <1 D, by [6, Prop. 2.12, P.1684]. By our assumption
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Since Zp” is a uniserial module , then either A < B or B
<A.IfA<B,weget ANB=AZ<T which is a
contradiction . Thus B < A and hence ANB=B<T.
Thus A is T-essential submodule of Z,”. By the same
way D is T-essential in Z,” then A and D are T-essential
inZp”. Thus Z," ar Z,".

Proposition (2.17): Every T-direct summand contain T
of a distributive and T-extending module is T-extending
module.

Proof: Let M be a distributive and T-extending module
suchthat M=A @ Band T<A, where T, Aand B are
submodules of M. Let C be a T-closed submodule in A
such that T < C. Since A is a T-direct summand of M,
then A is a T-closed submodule of M, by (2.9). Thus C is
a T-closed in M, by [6, Th. 2.14 , p. 1684]. But M is a
T-extending , therefore C is a T-direct summand of M
by (2.15). Since C < A, then C is a T-direct summand of
A, by (2.4).

Examples (2.18):

(1) Consider the module Zg as Z-module and let
T ={0,2,4}. Then Zg; and {0,2,4} are they only
submodules of Zg that containing T. Since {0,2,4} is a
T-essential and a T-direct summand of Zg and Zg is a
T-essential of Zg .Then Zg is T-extending module.

(2) Consider the module Z as Z-module . Let T = 2Z , then Z

and 2Z are they only submodules of Z that containing T . Since
2Z is T-essential in 2Z and 2Z is T-direct summand of Z .Then
Z is 2Z-extending module.

(3) The module M = Zg®Z, as a Z-module . It's known that M
is not extending module , by [10, ex. (2.4.18). Ch.2] . Hence M
is not {0}-extending module. Now let T = {0,2,4,6}®Z, .
Since M and T are the only submodules that containing T ,
then one can easily check that M is a T-extending module.

Proposition (2.19): Let T be a submodule of a module
M. If % is extending module, then M is a T-extending

module.The converse is true if M is a distributive
module.
Proof: Let A is a submodule of M such that T < A .

Since % is an extending module , then there exist a direct

summand % of % such that % <. B; .Therefore A < 1, B

by [5,Lem. 2.3, P. 17] and B is a T-direct summand of
M, by (2.3). Thus M is a T-extending .

For the converse , Let M be a distributive module % be a
submodule of % . Since M is T-extending and A is a
submodule of M , then there exist a T-direct summand B
of M such that A < 1o B. Thus 2 < =, by [5, Lem. 2.3,
p. 17]. Hence M = B &1 B, , for some submodule B; of

M But M is a distributive module , therefore
% = % ® B1T+T , by proposition (2.6). So % is a direct

summand of % . Thus % is extending.

Theorem (2.20): Let T and A be submodules of a
T-extending module M such that T < A. If the
intersection of A with any T-direct summand of M
containing T is a T-direct summand of A then A is
T-extending module.

Proof: Let M be a T-extending module and N be a
submodule of A such that T <N, then there exist T-direct

[37]

Corollary (2.10): Let T , A
and B be submodules of adistributive module M such

that T < A and M =A@+ B . Then % is a closed
submodule of % . K of M which
containing T and either KN A< T or KNB<Tisa

T-direct summand of M.
Proof: Assume K is T-closed of M such that T < K and

T = K N A. Since M is T-extending module , then K is a
T-direct summand of M by, (2.15) .

Theorem (2.22): Let T, A and B be submodules of a
module M suchthat M =A@t Band T<ANB.If
every T-closed submodule K of M which containing T
and either K N A <Tor KN B <Tisa T-direct
summand of M , then every T-complement containing T
for A or B in M is T-direct summand of M and
T-extending module .

Proof: Let K be a T-complement for A in M such that
T<K . Then K is a T-closed submodule in M . by [6. Th.
2.18 , P. 1684]. But K N A < T , therefore by our a
assumption K is a T-direct summand of M.

Let L be a T-closed submodule of K such that T <L .
Then L is a T-closed in M , by [6. Th.2.14 , p. 1684].
Since L N A <K N A <T. Then by our assumption L is
a T-direct summand of M and hence L is a T-direct
summand of K, by (2.4) . Thus K is a T-extending of M.
Theorem (2.23): Let T, A and B be submodules of a
module M suchthat M= A @+t Band T<ANB.IfM
is T-extending module, then every T-complement
containing T for A or B in M is T-direct summand of M
and T-extending module .

Proof: Suppose that M is T-extending module and let K
is a T-complement for A in M contain T , then K is
T-closed in M, by [ 6. Th. 2.18 , P. 1684]. Since
KNAS<T,then Kisa T-direct summand of M, by
(2.21). Thus K is T-extending module , by (2.22).

3- The relations ar and St :
In this section we define the relations a+ and St . Also
we give some basic properties of these relations.
Definition (3.1): Let T be a submodule of a module M
and let St be the set of submodules of M that containing
T.Let Aand B € St . We say A at B if there exists a
submodule C such that A <1,s Cand B <7, C .

Let M be a module and T =0 . Then one can easily show
that A o B if and only if A at B, for each submodules A
and B of M.

Examples (3.2):

(1) The module Z, as Z-module. Let T ={0, 2},
A ={0, 2} and B = Z, . Since A and B are T-essential in
Z4, then A T B.

(2) The module Z;, as Z-module .

Let T = {0,6},

in Zy, and clearly that A N {0,3,6,9} = T. But
{0,3,6,9} < T, therefore A is not T-essential in Z;, .
Thus A is not relate to B by ar

(3) The module Zp” as Z-module. Let T = (pin +2), A=

(Pim+ Z)and D = (%+ Z), wheren,m,reZandm, r>n
.Let B be a submodule of Z,” such that A N B <T.
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A N CSTimplies BN C<Tand BN D < T implies
A ND<T, for each submodules C and D of M.
Proposition (3.3): Let T be a submodule of a module M.

Then A o B if and only if 2 a , for each A and B €

St.
Proof: Let A ot B . Then there exists a submodule C of

M such that A < 7es C and B < 1e C. Then $< . % and

B B

;< by[5Lem 23P17] Thus—a;.

Conversely, Iet Y

T , then there exists a submodule =
C

of ;such that ;S e = and ;S e ;.ThenASTes Cand
B<t1es C,by[5 Lem.2.3,P.17]. Thus A ar B .
Remark(3.4): The ot is a reflexive and symmetric
relation.

Proof: Clear.

Proposition (3.5): Let T be a submodule of a module M.
Then M is T-extending if and only if for each submodule
A € St , there exists a T-direct summand D € St such
that A ot D

Proof: =) Suppose that M is T-extending , and let
A € St . Since M is T-extending , then there exists a
T-direct summand D € St such that A < s D, we want
to show that there exists a submodule B of M such that
A<isBand D <, B.LetB=D, then A < 1, D and
D<+1,x D .ThUSA(XT D.

<) Let A € Sy, by our assumption , there exists a
T-direct summand D € St such that A a1 D. Thus there
exists a submodule B € St such that A < 1, B and
D < 1, B. It is enough to show that B is a T-direct
summand of M . Let M =D & D; , where Dy is a
submodule of M . Since D < B then M =B + Dy . Since
DND;<T,then BND)ND; <T.ButD < 1, B,
therefore D; N B<T . Hence M =B @7 D, . Claim that
B=D.Toshowthat, Let be B,thenb =d +d;,
wheredeDandd; € D;. Sob-d=d; e(BND;)<T
<D .Henceb= d+d; € D. This implies that B =D .
Thus M is a T-extending module .

Proposition (3.6): Let T, A and B be submodules of
a module M such that A and B € St .If A a1 B, then

there exists a submodule C of M such that % and g are

singular .
Proof: Assume that A o B, then there exists a
submodule C € St such that A < 1, C and B <1, C .

Hence%f e ET and %S e ET , by [5, Lem. 2.3, P. 17]. Now
consider the following two short exact sequences:

=

Al c
025 25 22 L9
T T A/T
B J cm ¢yt
LB eyt
T T B/T

Where i, j are inclusion map and 4, nz are the natural

A C C/T
epimorphisms. Since =<, = and —S e =, then — !
T T T A/T

and B—/TT are singular , by [2, Prop.1.20, P.31] . By the
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summand D of M such that T <D and N < 1 D . Since
N <A N D, then N <1, A N D, by [5, Prop. 2.12 , P.
19]. By our A N D is a T-direct summand of A . Thus A
is T-extending module .

Theorem (2.21): Let T, A and B be submodules of a
module M suchthat M= A @+ Band T<ANB.IfM
is T-extending module , if every T-closed submodule

Examples (3.8):

(1) The module Z, as Z-module . Let T = {0} ,A =
{0,2} and B = Z, , then A N B = A < 1, A and
ANB=A<1sB .ThUS{G,z}ﬁT Zy.

(2) Consider the module Zp, as Z-module . Let
T= (Pin+Z),A:(Pim+Z)andwheren,meZand
m > n and let B = Zy”. Since by (3.2-3), A < 15 Zp”.
and A<, A.Then Z," Bt Zp".

(3) The module Z;, as Z-module. Let T = {0,6},
A= {GZZEQIO}andB le,thenAﬂB A<TeSA

. But A is not T-essential in Z;, by (3.2-2). Therefore
{ﬁ 2,4,6,8,10} is not related to Z1, by B+ .

Properties (3.9): Let T, A and B be a submodules of a
module M such that A, B € Sy . Then A g7 B if and
only if %ﬁ %

Proof: =) Suppose that A 7 B, then AN B <1, A and

ANB <1 B. ThenAnB e% and 228 <, % , by [5,

Lem. 2.3, p. 17]. Thus —/3 =

<) Let%/}— then AnB % and e%.Then
AﬁBSTeSAandAﬁBSTes B, by[5 Lem. 2.3, P.
17]. Thus A B+ B

Proposition (3.10): The B is an equivalence relation.
Proof: Clearly that B+ is reflexive and symmetric . We

want to show S+ is transitive , let A, B and C € St such
that A B+ Band B f+ C . Since AgrBand B g1 C,
then ANB <1, A,ANB<1,B,BNC<Band
B N C <t C. Let L be a submodule of A such that
ANCONLLST,then(BNC)N(ANBNL)<T.
Since BN C< 1 B,then ANBNL<T. Hence
(ANB)N(ANL)<T.ButANB< 1 A, therefore
ANL<T.SinceL<A, thenL<T.SoANC<1,xA.
Similarly A N C < 1, C. Thus B+ is an equivalence
relation.

Proposition (3.11):L et T, A and B be submodules of a module

M such that A and B € Sy .Then A BT B if and onIy if

C/T _
dB/T

/T _

third |somorph|s theorem, = . Thus
AT A

£ and < are singular.
A B

Definition (3.7): Let T be a submodule of a module M
and let A and B € Sy, then we say that A B+ B if
ANB<qsAand ANB<q14B.

Proof:=) Suppose that A S+ B and let C be a submodule of

M such that A N C < T .Then AN BN C<T, hence
(ANB)yNBNC)<T. But AN B < B ,therefore
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B N C<T.Now let BN D<T ,where D is a submodule of M .
Then ANBND<Tand hence (ANB)N(AND)<T.
ButA N B <t A, therefore AND<T.

<) To show A S+ B . Let L be a submodule of A such that
ANBNL<T.Since AN (B NL)<T, then by our
assumption BN L= BNBNL)<T. Hence ANL<T. But
L <A, therefore L<T . Similarly, let K be a Submodule of B
such that (A N B) N K < T . Then by our assumption A N K
=ANANK)<T.Hence BNK<T.ButK<B, therefore
K<T. Thus A 81 B.

Proposition (3.12): Let T, A and B be submodules of a
module M such that Aand B € St. Then A g1 B if and
only if foreach x € A - T,y € B - T there exists
r,rp€Rsuchthatrxe B-Tandriye A-T.

Proof: Assume that A g+ B, then ANB < 1 A and
ANB <1 B. Hence for each x € A - T there existsr € R
such that rx e (AN B)-T.Thusrx € B-T. Similarly,
for each y € B - T there exists r; € R such that
riye(ANB)-Tandhencer;ye A-T.

For the converse, assume that x € A - T. Then there
existsr e Rsuchthatrx e B-T.Sorxe (ANB)-T.
Thus AN B <1, A. Now lety € B - T, then there exists
r, € Rsuchthatr,y €A -T.Hencer;y€ (ANB)-T.
So ANB< 1, B. Thus A 81 B.

Proposition (3.13): Let T, A; , A, , B; and B, be
submodules of a module M such that A; ,A,, B;and B,
€ St . If A ,81' B, and A, ,81' B, , then
(A1N A;) Br (B1 N By).

Proof: Suppose that A; S+ B; and A, S+ B, . Then
AL NBy <76 A1, A NB1 <15 Byy AgNBy<1es Ay
and A; N By <1e By.Hence (A; NA)N (B N
By)<tes A1 NAzand (A1 NA;) N (B1 NB2) <1 B1 N
B, , by [ 9, Prop.2.6 . P. 903]. Hence (AiN A,)
Bt (B1N By).

Proposition (3.14): Letf : M — N be an epimorphism
and T, A, B be submodules of N such that A and
BeSr. IFAB B, then £ (A) B p 7 (B).
Proof: Let A and B be submodules of N such that
ABrB,then AN B <1, Aand AN B <, B.Hence
by [5, Lem. 2.15,P.20], f*(ANB)<( "mes T (A)
, implies that f 1 (A)NT*(B)<; ' mes f™(A). Since
A N B < 1, B, then by [5, Lem. 2.15, P. 20],
fPANB) <" me f T (B), implies that
A N YB) <t e f 7 (B). Thus £ (A) pr £
(B).

Proposition (3.15): Let T, A and B be submodules of a
module M such that Aand B € St . If A B B, then AATB

and % are singular.

Proof: Assume that A B+ B . Then A N B < 1, A and
A NB<qsB.Then AnB§e$ and Ange%,by
[5, Lem. 2.3, P. 17].

Now consider the following two short exact sequences:

0_, AnB Lam _ar 0
T (ANB)/T

[39]

0 408 L BT BT,
T (ANB)/T
where i, j are inclusion map and m, , m, are the natural
epimorphisms . Since %S e % and 208 <e % , then
A/T B/T .
AnB) /T AnB)T are singular , by [2, Prop.1.20,

P.31] . Hence by the third isomorphism theorem,

_A/T o A B/IT o 2 Thus -2 and
(AnB)/T ANB (AnB)/T ANB ANB

A%B are singular.

Corollary (3.16): Let T, A and B be submodules of a
module M such that A and B € St. If A 8+ B, then
A+B A+B .

—and —5are singular.

Proof: Clear by the second isomorphism theorem.
Proposition (3.17): Let {M ,}, ¢, be a family of
modules and T, , A, and B, be submodules of M, for
each a€asuchthat T, <A, NB,.IfA, Br,Bq,
foreacha € A, then (B 4e Ay ) Booerts (B oerBy) .

Proof Let A, Bt B, for each a € A ,then
Ay N By < (raes A and Ay, N By < (1gpes By - Hence
AanB A AonB B
by [5, Lem. 2.3,P.17] . == <, Zand =22 < 22,
AaﬂB'I(;a Te AaT“ Te
Then by [1]! @uEA Ta S e euEA _(1 and @ue
Aa N Ba Ba Aa N Ba
AT Ta §e®aEA E- But ®0.EA Ta =
®a € A(Aa N Ba) Ao @Da€aAa Ba
@a € AT a ’@aeA To @a € ATa and QGGATQ -
€EAB €Ar(AanB (SN
©a€aBetherefore 2eSaAenBy o SaEr A oy
@Da€eATa @a € AT a @a € ATa
€Ear(AanB €EAB
Sacr(BanBe) . Su€rBY Thon py [5, Lem. 2.3, P. 17],
@ a AT a @a € ATa

@GGA (Aa N Ba) < (® o € A Ta)es 6061\ Aa and hence 69(16
A (Au n Bu) < (®a €r To)es eu € A Bu . Hence
(Baer A N (Bae,By) < @a € A Tajes Daer Ag and
(Baer Ay N (ByenBy) < (@a € 2 Tajes Daea By . Thus
(@Gelx Aa) ﬁ @D € A Ta (@Gelx B(X*)
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Abstract: The effect of horizontal sleeping position on the
health of some patients with breathing problems still needs
to be clarified. A new update mathematical model for
simulating the unsteady airflow inside a bifurcated trachea
for various Reynolds numbers and inclination angles is
determined. The governing unsteady equations of motion,
consisting of two-dimensional Navier-Stokes equations,
nonlinear and non-homogenous are derived and numerically
solved using the finite difference Marker and Cell (MAC)
method. A numerical code based on Matlab platform is
developed to calculate specifically, in addition to other flow
characteristics, the pressure distribution and the streamlines
which are missing in most previous works in this area. The
results for axial velocities at a horizontal situation show
good agreement with both numerical and other experimental
findings. New results show that an increase in the
inclination angle diminishes the pressure drop inside the
main and a bifurcated trachea, Sleeping in a horizontal
position leads to a negative effect for many patients.
Consequently, the bed should be positioned at the angle
between 30° and 45°. The excellent features of these results
suggest that the proposed model-based procedure may
contribute towards the development of more accurate and
effective inclined bed therapy (IBT).

Keywords: Numerical simulation; bifurcated trachea; pressure
correction; Inclined Bed Therapy (IBT)

1.

Mathematical models of a bifurcated trachea are essential
for the development of biomedical engineering. Currently,
the understanding of airflow through human airways is
gaining much research attention either from a numerical
viewpoint or from the experimental design. Recently,
comprehensive understanding and prediction of phenomena
in physiology demanded and life sciences accurate
mathematical models with numerical simulation methods.
This is particularly true for realizing (IBT) inclined bed
therapy, which is a perfect normal remedy for many health
problems without using harmful chemicals or any substances
in the patients” body. IBT is a new therapy presented by
Andrew Fletcher [1] seemed promising. IBT therapy
expands the capacity of the body to perform without
externally infused of synthetic chemicals. It is beneficial for

Introduction

[40]

numerous illnesses linked with breathing problems such as
snoring, asthma, mild sleep apnea and chronic obstructive
pulmonary disease (COPD) [2-4]. The inspiratory flow rates
in the human respiratory system depend on the strength of
physical activity. The range of Reynolds numbers (Re) of
airflow in human trachea range from 800-9300 depend on
quiet or heavy breathing [5]. Numerically simulated of
respiratory flow patterns introduced in [6] to study the
inhalation and the exhalation through a single bifurcation for
Reynolds numbers 50 - 4500. Calay et al. [7] introduced a
numerically simulated of respiratory flow patterns through
the trachea and main bronchi at resting with Re = 1750 and
at maximal exercising with Re = 4600. Definitely, the
understanding of airflow in human trachea is an alternative
method to support the treatment of patients suffering from
breathing complications. Thus, a mathematical model
depicting the dynamics of airflow movement in the trachea
in terms of governing equations of motion is valuable. many
computational fluid dynamics researchers to investigate the
air flow through the trachea have been carried out. Li et al.
[8, 9] investigated steady laminar and transient air flow
field and particle deposition in a trachea with Re = 1201 for
breathing in resting conditions. The numerical results of
velocities are compared with experimental results of Zhao
and Lieber [10]. Their mathematical model with steady,
laminar, incompressible, and three-dimensional airflow in
rigid airway was developed. Commercial software based on
finite volume used to simulate their model. Liu et al. [11]
utilized a child model to investigate the impacts of
physiological features on the airflow patterns and
nanoparticle deposition in the upper respiratory tracts. Their
model in three-dimensions involved the mouth cavity,
larynx, pharynx, trachea and bronchial and it considered to
be incompressible, laminar and steady with a low Reynolds
number. A mathematical model of airflow in the upper
respiratory tract described in [12, 13] considering the air as
incompressible and Newtonian with constant density and
viscosity. The results obtained using a finite element
analysis and (COMSOL software) then the simulation results
compared with those in [12] from an analytical calculation
based on Fourier series. Alnussairy et al. [14, 15]
investigated the inclination angle dependence on the
unsteady airflow in the main trachea by developing a 2D
mathematical model (channel and tube) using two methods
analytically and numerically. The exact and numerical
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solutions are achieved using Bromwich integral and MAC
method. Their results for axial velocity at horizontal position
of the trachea (¢ = 0°) is compared with the observation of
Kongnuan and Pholuang [8] and Zhao and Lieber [6]
respectively. Chen et al. [16] carried out experiments and
simulation to investigate fiber deposition in a single
horizontal bifurcation under different steady inhalation
conditions. The flow was applied incompressible,
Newtonian, laminar and fully developed, a parabolic
velocity distribution at the inlet. The governing equations for
their model solved using Fluent software. Many researches
[7, 8, 9, 11, 13, 16] were achieved using commercial
simulation software, and using a given inlet velocity and
pressure with proper boundary conditions. These software
programs are often very expensive and not easily available.
Moreover, the pressure distribution in the tracheal segment
is unknown parameter needs an appropriate method for
calculation. To avoid this limitation, following [17], [18]
and [19]. Yet, no systematic mathematical model is
developed to simulate precisely the inclination angle
dependent unsteady air flow inside the human trachea. No
one investigated the effect of the inclination angle on the
airflow in the trachea and main bronchi although the inclined
angle position is one of the most important parameters that
affect such flow.

This paper investigates the effect of inclination angle
position on the airflow pattren in trachea and main bronchi
under resting and normal breathing conditions using Marker
and cell method, which is helpful because the pressure
boundary conditions at the inlet and outlet are not needed.
The velocity vector is identified and the results are achieved
with the desired degree of accuracy.

2. Governing Equations

Consider air flow model in the tracheal lumen is treated as
2D unsteady, nonlinear, incompressible (low Mach number,
M = 0.1, [7], laminar, Newtonian fluid with constant a
kinematic viscosity v =u/p. The governing momentum

and continuity, conservation equations in dimensionless of
the axisymmetric air flow in the cylindrical polar coordinate
system (r, z) are written as:

10

——(FU)+—(W) 0 @
ro 0z
oW 6(Wu) 6\N2 Wu:
at or o @
P, L[1ow, aN) ow | sin(6)
6z Relr or = or o7 2 Fr
ou 6u 6(uw)+£:
at or oz r
2 3
b, 21 A u ) cos(o)
or Relror  or r2 22 Fr
whereRe = pUyRy /1, Fr:UO/JgRO o, pUgR is

the Reynolds number, the Froud number, the time, density,
viscosity of air, pressure, average of the velocity at the inlet
and the radius of the trachea respectively. The axial and
radial equations of momentum (2), (3) are imposed with a
gravitational force parameter g . The angle & is the slope
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between the horizontal direction z and the direction of the
trachea [15]. The functions R;(z) and R,(z) which represent
the outer and inner wall of the trachea respectively [cf.
Fig.1] are given by:

1 , 0<z<z4
Ry(Z)=3 1+ -2 -z -2,)> . z7y<1<1, 4)
2r1'secﬁ+(z —zo0tanf , 2557 <Zppy
0, 0<z <1z
Ry(z) = \rf —(2 —23-1,)%, 23527 <25+1,(1-sinf) (5)

rCosf+124,
Where
(1 2r15ecﬁ) oy
(cosp -1)

7, =12, +(1-2rsecp)

Z3+0(1-sSinf) <7 <7
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Figure 1. (a) Geometry for a single bifurcated trachea
(b) Axisymmetric geometry for a bifurcated trachea

2.1 Initial and Boundary Conditions

The velocity components of airflow stream on the trachea
wall should be zero at the rigid wall (no-slip condition). A
maximum velocity of airflow is assumed to be fully
developed parabolic velocity profile with at the inlet
corresponds to the Poiseuille flow [15, 16, 20] of the
tracheal lumen yields:

w (r,z ,t):Umaxil—(%j ],u(r,z 1) =0

atz =0, whereU  =2U,
The boundary and initial conditions of the problem is set as:
w(r,z,t)=0=u(r,z,t)onr =Ry (z)

(6)

()
and r =R,(z2),23<2 <7
wzo,onrzo,OSZsz3 (8)

r
w(r,z,0)=0, u(r,z,0)=0, p(r,z,00=0forz>0 9)
2.2 Radial Transformation
The radical transformation is introduced:
()
5:—2 R(z)=0, (10)
R(z)
where R(z) = Ry(z)-R,(z), which has the influence of
immobilizing the tracheal wall in the transformed

coordinate £. Using the radial transformation in equation
(10). Therefore, the Equations (1)-(3) takes the form:
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(§R+R2)éw §R+R2(@ &J@w
R oz oz ) o¢ (11)
QU(ER +Rp)/R) _,
o N
ﬂ:_é’_er (gaR 2ja—p+ConW+
ot oz oz oz )o& (12)
iDiffw sing@
Re Fr
d_ 18—p+C0nu+ lefu—cose (13)
ot R o Re Fr
where
2 2
Conw = 1ow) uw  ow +i §@+8R_28w
R o6 ¢(R+R, o0z R\ oz z ) 0&
(14)
Diﬁw_azvi_z( aR+aR2ja?w
0z to4 oz¢
L21+(§ﬁ+&] P, (15)
R oz o 02
FT 26R[§6R 6Rj 582 0°Ry | |ow
RIER+R, Ra\"az @& oz? || o0&
2 2
Cony LU u _a(uw)+i[§ﬁ+aR2ja(uw) (16)
R 0 ¢R+Ry 14 R 0z oz
2 2
Diffu :6_12_3(§§+0R_2j6_u
oz R 0z oz )oré
2\ 42
T an
R Fo7 N &2 RUER+R,
3@( R asz éaR az u
Ra "o & o0& (¢R +R2)2

Likewise, the initial and boundary conditions (6) — (9) are
also transformed accordingly using equation (10), and

£e[01].

W(E,2,t) =U oy (1—52),u(§,z,t)=0f0rz:0 (18)
w(&,z,t)=0=u(&,z,t)on E=Ry(z)

and £=R,(2),253<2 <7« 19)
%ﬁ}z’t):o,on§:0,052sz3 (20)
w(&,2,0)=0, u(&,2,0)=0, p(&,2,00=0forz>0 (21)

2.3 Method of Solution and Discretization Procedure

The above unsteady governing equations (11) - (13) are
discretized using Marker and Cell (MAC) method [21]. The
pressure and velocities are computed at different locations as
shown in Figure 2. By defining &= jA&, z =iAz, t = nAt

and p(&,z,t) =

the time t, At is the increment of time,while Az, A& are the

length and width of the (i,j) cell of the control volume
respectively.

P(JAE,iAz, nAt) = p{jj, where N refers to

[42]

", $ (z8)
|

W, 7., W,

— - - — -
(z, \"f-'rj (Z-ﬂ"-fr.:} (z,.8,)
u, A Gog
|
Figure 2. MAC Cell Method

4.2. Discretization of Governing Equations
The discretization of the continuity and momentum
equations are performed at the (i, j) th cell to obtain:

Wllj]

R +R Wi
(&iRii + %) —

RPM4RD n n _
GiRii : 2li §|j [5_Rj +(8R_2J (Wat wab]+ 22)
Rii a Jy \a ) Ag
R +RIUT = (&R +Ra U7 4 o
Ri"AS
where
Wy w +w!
Wat _ ij i-1,j i-1,j+1 i,j+1 (23)
4
W w s, +w! +w"
Wab 0] i-1,j i-1,j-1 i-1,j-1 (24)
4
A& Az
i =¢j - R" =R(zj), z; =z T
and
Winj'l _Win,j _ pin,j _pin+l,j N
At Az
(25)
n
& (5R j R, Pt — Py +WCdi"j
R oz oz ); A& ’
. sin@
WCdin'j =Conw in,j +E(D'ﬁwin,j )+? (26)
1
C R N L. R ) @
At RIL A '
n n cosd
where ucd{; = Conu/'; +—(D|ff ) = (28)

where Conufj and Diffui’j are convective and diffusive

terms of the u- momentum equation at n™ time level at
the (i, j)th cell. The terms are differences in the similar

terms manner as in the w- equation of momentum. The
complete numerical procedure already discussed in
Alnussairy et al [15]. By using the result of w-velocity,
volumetric flow rate (Q) and resistance to flow (1) are
described as:

1
= 27(R')’ [ &;(w; )d¢, (29)

0
_M 30
Q' o
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3. Discussions

The numerical and simulations are performed using p=
1.79x10° pa.s, p = 1.225 kg.m~, g= 9.8 m.s%, R, = 0.01085
m, rl':0.0065, (radius of left bronchi), z;=0. 092m,

B =30° (angle of branching between left branch and main
branch) [5, 7], Az = 0.1 and A& = 0.025.the Reynolds

numbers of rest and normal conditional breathing is taken in
the range of 800 to 2000 and also tracheal length z,,,x = 0.16
m in nondimensional. The solutions are generated by using a
staggered grid of size 1600x40 at constant Fr = 0.27, Re =
1200 and U, = 85x10% m.s™. The pressure-based a finite-
difference approximation is used to solve the unsteady
governing PDE equations of motion. The results are found
after the steady state is achieved in the simulation when the
dimensionless t = 80. The pressure is computed to determine
the velocity after solving of the momentum equations.

The velocity field is plotted for every slice to generate a
complete description of the flow patterns in the trachea
during resting and normal breathing with varying Re. The
accuracy of the proposed method is validated with existing
experimental data and numerical studies (Schroter and
Sudlow [6]); Calay et al.[7]). Figure 3 compares the
variation of axial velocity dependent radial position obtained
by the present model with other findings for Re = 1570 and
0 = 0°. The w-velocity at slice A (z = 4) revealed a parabolic
pattern. In addition, the laminar flow exhibited a maximum
velocity in the central region and decreased to O close to the
walls (Schroter and Sudlow,[6]). Conversely, the w-velocity
at slice B (z = 12) is highly skewed toward the inner wall
and lowered in the outer wall of the single bifurcation. This
is in a good agreement with the findings of Calay et al.[7] on
w-velocity for different axial positions in main and single
bifurcated trachea.

oo Calay et al. (2002), Slice A
x ;
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Figure 3. Comparison of the axial velocity with others for
Re = 1570 when 6 = 0°

It calculated value of axial velocity in the horizontal straight
trachea (0 = 0°) for Re = 700 and slice B is compared with
the experimental results of Schroter and Sudlow [6] as
shown in Figure 4. The w-velocity near the outer wall is very
slow. Thus, the velocity distribution is low in the outer and
high in the inner wall.

[43]
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Figure 4 Comparison of the w-velocity in a bifurcated
trachea position (slice B) withRe =700 and 6 =0

Figure 5 presents the axial velocity dependent radial position
at different axial locations for Re = 1200 and 9 = 0°. Atz = 4
(slice A) the w-velocity revealed the parabolic shape inside
the parent due to the prescribed boundary condition.
However, the velocity distributions after the flow gets
divided inside the daughter tube at other axial locations. The
velocity at location z = 12 (slice B) near the outer wall is
very slow, thus the velocity distribution is low in the outer
and high in the inner wall. At z = 13.5 the velocity gradient
is decreased very rapidly near the inner wall and it started
rising in the outer wall to become M-shape. A typical M-
shape, velocity is revealed at z = 16 (slice C). Furthermore,
the velocity near the outer wall is high and reversed. This
indicates the appearance of backflow separation near the
outer wall for all values of Re.

1
z = 4, Slice A
0.9} =* z= 12, Slice B
: = z=13.5
= 0.8 . "z =16, Slice C
£ o7t -, ]
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§ o4r )
g
£ 0.3 1
a8
0.2 .
0.1 -
o pETEE A .
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Dimensionless axial velocity

Figure 5. Variation of w-velocity for different position of
z with Re = 1200 and 0 = 0°.
Figure 6 shows the w-velocity for different inclination angle
position with fixed Re = 1200, Fr = 0.27 and z = 12 (slice
B). An increase in the angle of inclination (from 0° to 45°)
is found to enhance the airflow velocity. These results are in
an agreement with the observation of Vliet et al. [3] &
Ragavan et al. [4].
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Figure 6. Variation of w-velocity for variance 0 with Re =
1200, Fr = 0.27 and axial position (slice B)
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In the human anatomy, pressure loss (wall) in the bifurcation
airways plays a vital role in the process of respiration. The
change of the pressure loss in human lung airways and
alveoli is the driving force in the respiratory system. Thus, it
is necessary to understand the effect of inclination angle and
boundary condition on the pressure loss.

Figures 7 demonstrate the influence of the slope angle of the
human trachea on the pressure loss (Ap = p— p, ), where pg

signifies the inlet pressure. An increase in the slope angle
situation is observed to enhance the pressure loss. It is
because at a higher angle of inclination the velocity of
airflow into the lungs during inhalation is increased. So, the
increasing slope angle of the trachea increased the velocity
of airflow through the main and the bifurcated trachea to the
lungs. This in turn generated a greater negative pressure in
the lungs. It supported the principle of Bernoulli’s, where
the pressure exerted by the gas is inversely related to the
speed of the gas flow [22].

o
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0.4}

-0.6

-0.8F

1k

Dimensionless pressure loss

-1.2F

-1.4
o 20 40 60 80 100 160

Dimensionless axial position

120 140

Figure 7 Variation of pressure loss with axial position for
different 6 with Re = 1200 and Fr = 0.27

Figure 8 presents the axial position dependent changes in the
volumetric flow rate (Q) for different & at Re = 1200 and Fr
= 0.27. For higher slope position the value of Q inside a
straight trachea is enhanced. Conversely, the flow rate
through main bronchi is reduced because of the narrowing of
the airway branch diameter. Moreover, the influence of
slope angle (0 = 15°) is found to be insignificant.

14
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Figure 8 Variation of the volumetric flow rate with axial
position for variance 9
with Re =1200 and Fr = 0.27

According to Chovancova and Elener [23] flow of
resistance in the airways depends on whether the flow is
turbulent or laminar on the dimensions of the airway and on
the gas viscosity. Therefore, the resistance to flow in a
trachea at different 6 is shown in Figure 9. It revealed an
increase when going down the first bifurcated trachea. This

[44]

implies a reduction in the airway branch diameter (cross-
section area). It is clear that the flow resistance, reduced
with increasing of slope position of 6.

Dimensionless resistance to flow ( )

60 80 100 120 140
Dimensionless axial position

0 20 40 160

Figure 9 Difference of the resistance to flow with axial
position for variance 6 with Re = 1200 and Fr = 0.27

The understanding of airflow patterns through human
trachea are significant to study the aerosolized medication
delivery processes and localized diagnostics diseases of the
lung. Figure 10 - 11 display axial position dependent
streamlines behaviour of airflow for different values of 6.
For 6 = 0° (Figures 10, 11) it is found that there are regions
in the bifurcated trachea where the flow recirculation
occurred irrespective of the Re. Furthermore, this
recirculation is increased in the outer wall at the higher
inclination angle of 30° (Figure 11).

& L L L I - R L

Disssialets il posion

ansiealons axisl paitisn

Figurel0 Streamline of airflow pattern through main and
single bifurcated trachea for Re=1200 at ¢ = 0°

1l "
]

Figure 11 Streamline of airflow pattern through main and
single bifurcated trachea for Re= 1200 at # = 30°

4. Conclusion

A symmetric mathematical model is developed and
simulated to determine the effect of slope angle of the
airflow through the trachea and main bronchi. The numerical
model is simulated by using a MAC method with staggered
grids. Increasing the slope angle is found to increase axial
velocity, pressure loss and volumetric flow rate through the
main trachea. The resistance to flow (pressure drop) is
reduced with the increase of slope angle. The recirculation
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regions are increased in the outer wall with the higher slope
angle. The sleeping in a horizontal situation leads to a
negative influence for many patients. Thus, the slope angle
situation between 30°- 45° is demonstrated to induce a better
influence that may be helpful to the patients with chronic
obstructive pulmonary disease and other respiratory
diseases.
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Abstract: The dynamics of discrete-time prey-predator
model are studied and investigated. The model has four
fixed points. The origin fixed point is always exists while
the others are exist under some conditions. The conditions
that required achieving local stability of all fixed points are
also set. The results indicate that the model has a flib
bifurcation which found by varying the prey intrinsic
growth parameter via pray and predator populations,
respectively. Finally, numerical simulations not only
illustrate our results, but also exhibit the complex dynamic

behavior and chaotic.

Keywords:  Discrete  model, bifurcation

Competition.

theory,

1-Introduction:

Competition is an interaction between organisms or species in
which both species are harmed. Competition may be for territory

which is directly related to food resources. Some interesting

phenomena have been found from the study of

practical competition models. Hsu et al. [1]
concerned with the growth of two predator species
competing exploitatively for the same prey

population. The predators feed on the prey with a
saturating functional response to their prey density.
The existence of species in the real world is not a
lone so that the interaction, mutualism and
competitive mechanisms are taken place. For that
researchers have been investigated extensively in the
recent years. They formed their models by using a set
of differential equations [3,4,5]. Many authors have
been carried out studying the chaotic dynamics that

occur in multispecies continues time as well as

[46]

discrete time prey-predator
[9,10,11,12,13]

modification of the system using nonlinear difference

models [6,7,8]. In
authors have been given a
equations or partial differential equations .

Another example of competition is in Holt et
al. [2]. They focused on the competition between two
or more victim species that share a natural enemy.
They also reviewed empirical examples of apparent
competition in phytophagous insect hosts attacked by
polyphagous parasitoids and they developed models
of apparent competition in host-parasitoid systems.
They found that the apparent competition is
particularly likely in insect assemblages because
parasitoids can limit their hosts to levels at which
resource competition is unimportant.

This paper is organized as follows: in
Section 2, the discrete prey—predator model is
formulated and investigated, and then the conditions
of existence and local stability of its fixed points are
derived. In Section 3, we discussed that the model
undergoes flip bifurcation in the interior R?, , by
varying some values of parameters. Also, the
numerical simulations are done to confirm the
analytic results, such as the local stability as well as
the bifurcation diagrams, phase portraits. Finally, in

section 4 the conclusions are drawn.
2-The model and the analysis of its fixed

points:

Consider the following discrete prey-predator model
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mailto:alaahlafta@gmail.com
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Xt )
1+ye

Ve+1 = CYt (1 - %;t)

Xe+1 = AX¢ (1 -

€y

This model describes the interactions between two
populations with the initial conditions x(0)>0 |,
y(0)>0 , where the x(t) and y(t) denote the number of
prey and the number pf predator at time t,
respectively. The parameters a and c are the growth
rate of the two species, respectively. The possible
fixed points are obtained by solving the following
algebraic equations:

x=ax(1-2)

1+y

y=oi-25)

1+x

With simple computation we get the following fixed

points:

1) e; = (0,0) is the origin fixed point which is
always exists.

2) e, = (ry,0), where nry =aT_1, is the first
axial fixed point which means the prey population

exist with absence of predator one.

3) e; = (0,1,), wherer, = % is the second
axial fixed point which means the predator
population exist with absence of prey one.

o ey _ (1-@)@c-1) (1-9)Ra-1)y
4) ey = (x%y") = ( 1-(a+c) ' 1-(a+c) ) is

the unique positive fixed point which exist if and

onlyifa,c > 1.

For studying the stability of each fixed point
we shall obtain the wvariation matrix and its
characteristic equation. In general with (x,y) is a
fixed point of model (1), the Jacobian matrix at

(x,y) can be written as;
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[47]

J(x,y) = (]:11 j.u)

J21 J22

Where
;g X
Ji1 = Tty
. _ axz
J12 = 1492
cy?

Ja1 =5z

. 2cy
=C—-——
J22 1+x

and characteristic equation of J((x, y)) is:

F(A) =22+P1+Q 2)
Where P =c+a— (zﬂﬁ-ﬂ) and
1+x 1+y
2ax 2cy acx?y?
Q= ( l a)( | c) -
y+1 x+1 (x+1)2(y+1)2

Hence the system (1) is a dissipative system if
2ax
|( y+1 a)(

Let A, and

equation(2), which are called the eigenvalues of the

acx?y?

2cy | ) _
(x+1)2(y+1)2

x+1 I

}<1nq

A, be the two roots of
Jacobian matrix at any point. We recall some
definitions of topological types for a fixed point. A
fixed point is called a sink point if |4; ] < 1 and
| A,] < 1, so the sink point is locally asymptotically
stable. A fixed point is called a source point if
[4,] > 1and |A,] > 1, so the source point is locally
unstable. A fixed point is called a saddle point if
[41] > 1and |1,] <1(or]|4;] < 1land|4,] > 1).
And a fixed point is called non-hyperbolic point if
[A4] =1 or |A] =1 [12]. The
propositions give the behavior dynamics of the fixed

either next

point e; as well as e, and e;.



Proposition 2.1: The origin fixed point e, is:

a) Sinkpointifa<1landc <1,

b) Source pointifa > 1and ¢ > 1;

¢) Non-hyperbolic point if a =1 or
c=1;

d) Saddle point otherwise.

Proof: It is clear that the Jacobian matrix at

e, is given as follows:

Obviously, the eigenvalues of the J, are A; = a and

A, = ¢, therefore all results can be obtained.

Proposition 2.2: For the fixed points e, and e; we

have:
1- For the prey axial fixed point e, is:
a) Sink pointifl <a<3andc<1;
b) Source pointifa > 3 and ¢ > 1;
c) Non-hyperbolic point if either

a=1or3orc=1;
d) Saddle point otherwise.
2- For the predator fixed points there exist

at least four different topological types

these are:
a) Sink pointifa<land1<c <3;
b) Source pointifa > 1and ¢ > 3;
) Non-hyperbolic point if

a = 1 either = 1073 ;

d) Saddle point otherwise.

Proof: It is clear that the Jacobian matrices at

e,and e; are given by:

a-2ary ar12
]Ez = 0 ¢
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[48]

a 0
]e3 (crlz c—2cr2>

Hence, the eigenvalues of the J,,
are A, =2—a and 1, =c while the
eigenvalues of the j,, are 4, =a and
A, =2 —c therefore all results can be

obtained, respectivaly.

Before studying the behavior of the unique
positive fixed point e, , we need the following

Lemma which appeared in[13]

Lemma23:LetF(1) =242+ P2 + Q.Suppose
that F(1) > 0,4, and A, are the two roots of
F(A) = 0.Then
(i) |4 <1land|A,| <1lifandonlyif F(—-1) >0
and Q < 1;
(i)A4] < land|A,| > 1(or|Ay| > 1and |1,] < 1)
ifandonly if F (—1) < 0;
(iii) |24] > 1 and |A,] > 1 if and only if
F(—-1) >0and Q > 1;
(ivyA;, = —1and A, # 1ifandonly if
F(=1) = 0and P # 0,2.
Proof: see [13].

In order to discuss the dynamics behavior of
the positive fixed point e,, we need the Jacobian
matrix at e, which is given by

2—a-4 #
](x' Y) = (c—1)2

z 2—c-21
Where P and Q in equation (2) are

P=a—-4+cand

(a-1)%(c-1)?
ac

Q=(@-2)(c-2)-

Now, the next proposition gives the

dynamics of the positive fixed point.
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Proposition 2.4: The unique positive fixed pointe,
is:

1- Sink point if and only if the a €
(Alw) n I n [(01 BZ) Y (Bll OO)]

2- Source point if and only if the a €
(A,OO) ﬂ] N (BZ'BI)

3- Saddle point if a€(,o)n
[(0, min{b,, b,}) U (max{b,, b,},0)].

4- Non-hyperbolic point if a € (4,,©)

andeithera #4 —cora+2—c;

Where

A= 2—c+4/(c=2)%2+4(c-1)

2

— 2 —4(c—1)2
,B1 — 2—c+4/(c-2)%-4(c-1)

2

2—c—+/(c—2)2—4(c — 1)2
2

BZZ

I = (min{by, b}, max{by, b,}),

—ki+ [ky2—4k, —kqy— /k12—4k2
bl =

=———— and b, =
2 2
2
while k; = <=2 and k, = &€ +11) .
Proof: We will apply Lemma 2.3.

Therefore:

F)=14P+Q=1+a—4+c+
1212
(a—2)(c—2) - 5

That implies a® + (¢ — 2)a— (c — 1) > 0.
Thus F(1) > 0 ifand only if a € (4;,®).

Now, we have to show that F(—1) > 0 and
Q < 1. So that, we have the following steps:

F(-1)=1-a+4—-c+(a—-2)(c—
CAN2(n_1)2
2y — @ g
ac

—1)2
That implies a? + €572 g 4 €D
c+1 c+1

Therefore F(—1) > 0 if and only if when

a€el

It is clear that Q =(a—2)(c—2)—

—1\2(r—1)2
M<1 if and only if a®-—

2- c)a + (c — 1)2 > 0 therefore Q < 1 if
a € («o,B,) U (B, ®)

According to the Lemma 2.3(1), e,is sink
when

ac€ (Al' OO) n I n [(O' BZ) Y (Bllw)]

The proof of the other cases can be easily
obtained.

3-Numerical simulation:

To provide some numerical evidence for the
qualitative dynamic behavior of the model (1),s0 that
at different set of values the local behavior of the all
fixed points are investigated numerically. For the
fixed point e; we choose the value of a = 0.7 and
c=0.8 as well as we choose the values a = 1.7
and ¢=08 and a=0.7 and c=1.8 forthe
fixed points e, and e, respectively . Figures 1, 2,
and 3 indicate the stability of e;e, and e; with the
initail value (0.6,0.5). For the positive fixed point the
values of a =1.8 and ¢ =12 are chosen that
satisfy the condition 1 in proposition 2.4. Figure 4
shows the local stability of the e,=(0.55,0.26) with
initial value (0.6,0.5).

a=0,7;c=0,8, and (x0,y0)=(0,6 0.5)
o7 |

— iy
(0, y0)=+

06

o -]
= ir

<

¥ (pedators pipulation )

D
o

Figure 1: This figure shows the stability of e;

according to the proposition 2.1.
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a=1.7,c=0.8, and (x0,y0)=(0.60.5)

— gy
(0 yO) +

055 06 0BS5S 0.7 075
® (proys population)

Bt o
14 045 05

Figure 2:The stability of e, under the conditions of

the proposition 2.2

&= 7,6=1.8, and (x0,y0)=(0.5,0.5)

¥ lpredatocs poputation )
=
=

Figure 3: This figure shows the stability of e3

according to the proposition 2.2

a=1.8,0=1.2, and (x0,y0)=(0.6 0.5)
07 —
T Ly )=
0ES (20, yO)=+
0.6
‘g 0585
BN +
z
£ 045
B ona -
- . e
0385 ™ 4
o /
035 - . " .
55 06 065 07 07s
® (proys populstion)

Figure 4: The stability of the positive fixed point e,

according to the proposition 2.4

In different point of view, we study the
phase portrait of the model (1) when we change only
the parameter a via prey population and fix the
others. To study the behavior of the model (1) when
the parameter varied in the interval [0.75,3.95] one
can consider the initial condition (0.6, 0.6) which is
varied in the basin of attraction of positive fixed point
e,. When the control parameter varies, the stability of
a periodic solution may be lost through various types
of bifurcations and it gives the stable, period-2,
period-4,perod-8,period-16,period-32 then chaotic

[50]

Now, without loss of generality we fix the
parametersc = 1.2, and we assume that a is varied
inside the interval[0.75,3.95]. The phase portraits are

considered in the Figures 5,6,7,8,and 9:

075 o~ 128 1.50 200 275 251 275 300 25 0 575

a
Figure5: Bifurcation diagram for system (1) versus a

via prey population.
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phase portraits are considered in the following

Figures:

0 a 24 28 32 ] .
Figure 8: Bifurcation diagram for system (1) versus a

via predator population.
Figure6: These phase diagrams when P pop

a = 2,3.24,3.5001, 3.544, 3.556, 3.5587,

respectively.

Figure7 : These phase diagrams gives the

chaotic when a = 3.564.

The second numerical case starts when we
will study the phase portrait of the model (1)as only =

the parameteravia predator population and fix the
others. To study the behavior of the model (1) when
the parameter varied in the interval [0.9,3.95] one
can consider the initial condition (0.6, 0.6) situated in
the basin of attraction of fixed point e,. When the
control parameter varies, the stability of a periodic
solution may be lost through various types of

bifurcations and it gives the stable, period-2, period-4 Figure 9: These phase diagrams give when a =

then chaotic. 2.33,3.3,3.507, 3.66, respectively.

Now, without loss of generality we fix the parameters
¢ = 12, and we assume that a € [0.9,3.95]. The

[51]
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4-Conclusion:

In this paper, the local stability of all
possible fixed points of a two dimensional discrete
time prey-predator model has been studied and
discussed. The chaotic dynamics and bifurcation of
the model have been investigated. Basic properties of
the model have been analyzed by means of phase
portrait, and bifurcation diagrams. Under certain
parametric conditions, the interior fixed point enters a
flib bifurcation phenomenon. This could be very
useful for the biologists as well as mathematicians

who work with discrete-time prey—predator models.
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Abstract: In this paper a predator-prey food chain model with
modified ratio-dependent and Sokol-Howell functional response is
proposed and discussed. The model is observed to be dissipative.
The stability of the equilibrium points of the three species system is
analyzed. The flow of the model is explored theoretically with two
functional responses and numerically with three ones.

Keywords: Sokol-Howell, modified
analysis, functional response.

ratio-dependent, stability

1. Introduction

As we all know that periodic and chaotic environmental
models are eccentric in behavior. The permanence and
extinction in predator-prey with ratio-dependent received
attention by many ecological authors, see [1,3-6,11]. Jost and
Arditi proves that prey and ratio-dependent systems can fit
well with time arrangement created by each other [1].
Gakkhar and Naji in [6] studied the chaos in ratio-dependent
model. Guin and Mandal [3] examined the flow of reaction-
diffusion in ratio-dependent systems with intraspecific
competition. Sokol-Howell functional response of the form

hi’iz is studied by many ecologists; see [7-10]. In this paper,

we modify the model of [8] by using the modified ratio-

2
dependent Sokol-Howell functional response hyzxi'xz

in the

place of the standard Sokol-Howell. The dynamics of the
three-species predator-prey is studied (Stability analysis,
Numerical exploration, results and conclusions), which
shows the significance of the system beneath consideration.

2. The Mathematical Model

Consider the three species food chain model at time (t)
consisting of the prey which is denoted by X(t), the middle
predator denoted by Y(t) and the top predator whose

denoted by z(t). The middle predator Y preys on its only

food X at the first level according to modified ratio-
dependent Sokol-Howell functional response, while the top
predator Z preys on Y at the second level according to the
standard Sokol-Howell. The dynamics of the model can be
represented by:

[53]

dx W, Xy’

“oax-bx*-——22 =G, (x,Y,2),

dt 1 1 hly2+X2 1( y )

dy  w,xy’ W,z

L =—z7 __dy-——"=G,(X,Y,2),

dt h2y2+X2 ly h3+y2 2( y )

dz W,z

E:#yyz_dzzz(%(x,y,z)- (1)
4

The functional response in system (1) is proposed by
removing the prey X and put the ratio § in Sokol-Howell

response. The solution of the system (1) exists and is unique
since all the functions G, (i =1,2,3)are Lipschitzian on

R®={(x,y,2)eR*:x>0,y>0,2>0}. Here the
a;,b,d; (j=12) h.andw,

denote to: @, is the growth rate of the

positive  constants
(k =1,2,3,4)
prey X, b1 represents the intraspecific competition of prey
X, W, 's are the maximum values attainable by each per

d.’s

j
represent the death rate of the middle and the top predators.

capita rate, h,’s are the half-saturation constant,

Note: System (1) is observed to be dissipative, see [8].

3. Stability Analysis

In this section, the stability of the equilibrium points of

model (1) is discussed. The points E, =(0,0,0) and

E, = (%,0,0) are always exist. The third equilibrium point

givenby E, = (X., ¥.,0) exists where

X :l(al_W—SJ and Y, = WX )
hw; +4d2h; 2d,h,

with the following condition provided that 0 < X < %
x*(v, —4dZh,) =0. )

For the stability analysis of E;, E; and E, see[8].
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Now, the positive equilibrium point E, = (X',y ,2)
exists if there is appositive solution to the following
equations in the Int.R®.
2

Wy

2 2 =0,
hy” +x

W, Z

0, :al_blx_

W, Xy
h,y? + x?

—_3% __,
Cohy+y?

g, =

W,y
=———-d,=0. 4
gS h4—|—y2 2 ()

From the third equation of (4) we have
d,y’-w,y+d,h, =0, (5)
so that,

. W, 4w, —4d2h,

) = 2d, '

Hence, if the term W. —4dZh, <0, then there is no

positive solution to Eq. (5) and if Wf —4d22h4 >0, then

there are two positive solution to Eqg. (5). The last case
occurs if the following condition holds

w; —4dZh, =0. (6)
Then, there is only one solution given by
y = )
2d,

From the first equation of (4)
bx® —a,x?+bhxy?+y?*(w,—ah)=0. ()
Equation (8) has one positive root depending on Descartes’s

rule if
w, < ah,. ©)
Again, from the second equation of (4)
. ho+y? owxy
7 =2 ——-d | (10)
w, | hy“+x

Now, in addition to condition (6) and (9) the positive point
E, exists if the following condition holds

sz*y*

————>d,. 11

hy?+x? )
The varational matrix V = (X, Y, Z) is computed for system
(4) as:

V(xy,z)=|m | i, j=123, (12)
where
«owy Pt (hy? -x7)
m, =a —2bx —————
(hyy = +x7)
2w, Xy

m - =
Ty ey’

my, =0,
_ Wy (hy? —x7)

Ty ex)

2W2th*y*3 Wsz*(hs - y*z)
My ="—0 o W %27
(hy = +x7) (h;+Yy™)
W,y
m = T a0
T (hy+y?)

ms, =0,
_ W4Z*(h4 B y*z)

T Yy
w,y

_ WY g

(h,+y?) °°

The characteristic equation of the above matrix (12) can be
written as:

A +HA +H,A+H, =0,

m33

where
H1 = _(mn +m,, + mss)’

*2 X %
:_(al_Zblx*_le (hy” —x ))

P?
(2w xPy d_ w,z" (h, — y™)
P ' Q!
w,y"
( Q: dj
2
where
P, =(hy?+x?),P,=(h,y?+x?) and

Q =(hy + y*z), Q, =(h, + y*z).
Similarly we writt H,, Hyand H;H, —H; in the form

of m; , where
H, = (M;my, —mpmy, )+ (My, My —Myms,)
+ My Mag
H, = (mllm22 - m12m21) T My Maz + My My,
Since y*2 = h4 according to condition (6).
Hy = mg;(Mmy —mymy,),
and
HH,-H;= _(mll + mzz)[(mnmzz - m12m21)
2
+ My Mg + My My ] — Mgy (M, +My,)
Now, straightforward computations show that H, > 0,

H; >0, and H;H, —H; >0 if and only if the next
conditions are hold:

* *2_ *2
L g, My (=X 1y
2X P,

(13)

[54]
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*2

h, h, > x_2 (14)

szlqzx*y*3 _ W3Z*(h3 — y*z) <d (15)
(hy?+x?%)*  (hy+y?)? .

hy >y~ (16)

Way d,. (17)

2
According to Routh-Hurwitz criterion, E; = (X", Yy ,2")is

locally asymptotically stable in the Int.Rf provided
conditions (13-17) hold, see [2, 13].

Now, for the global asymptotic stability we didn’t find a
suitable Lyapunov function and we discuss the global
dynamics numerically in the next section.

4. Numerical Exploration

The Runge-Kutta method of six order is used to solve the
system (1) numerically, see [12]. There are two cases here to
discuss. The first case of system (1) itself, and the second
case we replacing the Sokol-Howell functional response by
Leslie-Gower and we run the new system numerically so that
to analyze the behavior of modified ratio-dependent
functional response more.

4.1 Modified Ratio-Dependent with Sokol-Howell

For the following data set

a, =0.20, b, =0.0007, w, =0.051, w, =0.27,
w, =0.21, w, =0.095, d, =0.0033, d, =0.005,
h,=h,=0.22, h,=1.0. (18)

The attractors for model (1) are plotted depending on the
half-saturation constant h4 of the top predator, since we

discussed and other authors the effects of the growth rate,
death rate and the intraspecific competition in many papers,
see [3,8,9].

—
==
- Tt
1 & ~
05.- .9
.,
\\
0. N
4000~ W .
s . " 30
2000 e B
0 e 100
i
2000 -100

y X

Figure 1. 3D of system (1) period 2 with data (18)
and h, =1.20 with fading in the top predator.

For h4 with data (18), system (1) observed to be with period
2 and vanishing of the top predator as it shown in figure 1.

Decreasing the value of h4 from 0.9 to 0.5, then model (1)
is periodic with period 1 as plotted in figure 2. Decreasing
h, a little bit more for h, = 0.4, then system (1) food
chain is stable as it shown in figure 3.

3 e
I — i
o |
% { .
| -
) e
1 \_ ot T
| 2
Y
] R
4000 \E}. \\ e
2000 " o = 300
e e
T - 100
i e
-
2000 100

¥ x
Figure 2. 3D of system (1) periodic with data (18) and
h, = 0.5 with extinction in the top predator.

Figure 3. 3D of model (1) with data (18) stable for
h,=0.4

4.2 Modified Ratio-Dependent with Leslie-Gower

The food chain system (1) is modified numerically by putting
the Leslie-Gower in the place of Sokol-Howell in third
equation of system (1) and the top predator equation written
as:

dz 2
I C322 _
dt

and also we don’t forget to replace y2 in the denominator of
last term of the middle predator by Yy and the last term

W,z
h,+y’

(19)

W, Yz
hy +y
Sokol-Howell with Leslie-Gower and the model exhibits
chaotic dynamics. Now, for the following data set

change to

. The model in [8], we used the standard

a =250, b =05 w =025 w,=75,
w, =0.21, w, =1.925, d, =0.0042, c, =0.005,
h, =h, =20.0, h, =h, =100, (20)

[58]
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We run the Lesile-Gower with modified ratio-dependent for
data (20) and our target to see the changes in the behavior of
the system dynamics and also comparing our results in @
section 5 with the model in [8]. o

160 +

140+

200 120+

100+
150

H

a0

B0

50
w0}

0 0k
200

o
0 20 40 B0 ao 100 120 140 160 180

¥

. 0 1g6s ' . Figure 4(d). 2D yz-plane of figure (5a) periodic
change to stable.
Figure 4(a). 3D of modified ratio-dependent and
Leslie-Gower with data (20), stable with persistence of )
the prey X , middle predator Yy and the top predator Z . 5. Results and Conclusions

The model (1) is investigated theoretically and figures of the
attractors are blotted in Figs. 1-3 with data (18) for the
modified ratio-dependent with Sokol-Howell and in Figs.
4(a-d) with data (20) for modified ratio-dependent with
Leslie-Gower. Now, for data (18) we depend on the control
parameter the half-saturation level h4 of the top predator
while we depend in data (20) completely, and results after
that are obtained:

1) For the value of h, =1.2 system (1) shows the

periodic as in Fig. 1, while decreasing the value of

(k)

o
[=]

o
[=]

=
=]

[
[=]

=
=]

@ @
=] =]

.
[=]

prey: 4.97 ; mid pedatar: B6.99 ; top predator: 8.66

i 1\ h4 from 0.9-05 and 0.4 change the system to less
. M’"‘"”“ ———————— periodic and then to stable as blotted in Fig. 2-3, so
46 455 4B 4Bs 47 475 48 486 49 485 5 - -
time i the saturation level h, is the control parameter of
Figure 4(b). Time series of figure (5a). the food chain (1).

2) The permanence of the periodic of the system with
5 fading of the top predator Z, so that the model is

180 ‘ - ‘ - ‘ not complicated as with standard Sokol-Howell
functional response.

3) Changing the third term of the model from Sokol-
Howell to Leslie-Gower with data (20) turn the
system from periodic to stable with coexisting of all
the species of the model and less density of the prey
X as it plotted in Fig. 4.

4) The model in [8], we used the standard Sokol-Howell
with Leslie-Gower and the model exhibits chaotic
dynamics while system (1) described above is
periodic with nearly the same data.

5) A three of functional responses are used here after

1601

1401

1201

1001

aor

B0

anf

20F

iy T 95 Toh. GvE 19w T putting the Leslie-Gower in the last equation of (1)
. and Holling type Il in the place of Sokol-Howell in
Figure 4(c). 2D xy-plane of figure (5a), stable of the the second equation of system (1).

prey and periodic turn to stable of the middle predator. Acknowledgments

The author acknowledged the support from Middle
Technical University and Technical Instructor
Preparing Institute, Electrical Department.

[56]



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS

References

[1] C. Jost, R. Arditi, “Identifying predator-prey process,
Theor. Popul. Biol., vol. 57, no. 4, pp. 325-337, Jun.
1989.

[2] L. JS. Allen, “Introduction to Mathematical Biology,”

Pearson-Prentice Hall, New Jersey, 2007.

[3] L. N. Guin, P. K. Mandal, “Spatiotemporal dynamics of
reaction-diffusion models of intracting populations,”
Appl. Math. Modeling, vol. 38, pp. 4417-4427, 2014

[4] M. Hague, “Ratio-dependent predator-prey models of
Intracting populations, ”, Bull. Math. Biol. vol. 7. no.2
pp. 430-452, 20009.

[5] R. . Arditi, R. Ginsburg “Coupling in predator-prey
dynamics: ratio-dependence,”. J. Theor. Biol., vol. 139,

no. 3, pp. 311-326, Aug. 1989.

[6] S. Gakkhar, R. K. Naji, “Order and chaos in predator to
prey ratio-dependent food chain,” Chaos, Soliton &
Fractls, vol. 18, pp. 229-239, 2003.

[7] Sokol, W. and Howell, J. A., “The kinentics of phenol
oxidation by washed cells,” Biot. Bioe., vol. 30,

pp. 921-927, 1987.
[8] S. J. Ali, N. Md. Arifin, R. K. Naji, F. Ismail, N. Bachok,
“Analysis of ecological model with Holling type IV functional
response,” IJPAM, vol. 106, no. 1, pp. 317-331, 2016.
[9] S. Ruan, D. Xiao, “Global analysis with predator-prey
system with non-monotonic functional response, ” SIAM
J. Appl. Math. vol. 61, no.4, pp.1445-1472, 2001.
[10] Z. Hu, Z. Teng, L. Zhang, “Stability and bifurcation
analysis of discrete predator-prey model with non-
monotonic functional response, ” Nonlinear Analysis:
Real World Application, vol. 12, pp.2356-2377, 2011.
[11] Z. Zeng, “Dynamics of non-autonomous ratio-dependent
food chain, ” J. Appl. Math. & Comput. vol. 215, no.3,
pp. 1274-1287, 20009.
[12] C. F. Gerald, PO. Wheatly, Applied numerical analysis,
Adison-Wesley, New York, USA, 1998.

[13] R. M. May, Stability and Complexity in model
Ecosystems, Princeton University Press, Princeton,
New Jersey, 1973.

[57]



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS

Property (ao0) AND TENSOR PRODUCT

Zaman Adel Rashid®, Buthainah A.A. Ahmed?
Y2Department of Mathematics, College of Science, University of Baghdad, Iraq
. zamnhamzall@gmail.com
? puthainah41@gmail.com

ABSTRACT: Let §; € BL(X;) and §, € BL(X;) are a
continuous linear operators and both have property (ao)
then their tensor product has property (ao) if and only if
the upper Weyl spectrum identity o55;(5;®S;) =
osr; (81)0(S2)Uosr; (82)0(S1) holds true. Perturbations
by quasi-nilpotent operators are considered.

1. INTRODUCTION

We will postulate along this paper X is a Banach space
and BL(X) refer to each a continuous linear operators on
X. For § € BL(X), let 0(§),0,(S) and iso o(§)denote
respectively the spectrum, the approximate point spectrum
and isolated points of 6(S). Let a(S) refer to the nullity
of § defined by a(S) = dimker(S) and B(S) refer to the
deficiency of § defined by B(S) = codim S(X). If
nullity of § is finite and rang of § (R(S)) is closed then
Sis called an upper semi-Fredholm operator and if
deficiency of § is finite then S is a lower semi-Fredholm
operator.

In the complete @, (X) (resp. ¢_( X) ) denote the set of
all upper (resp. lower) semi-Freadholm operators on X. A
continuous linear operator § is either upper or lower semi-
Fredholm then § is semi-Fredholm (symbolizes @ ( X) ).
While § is called a Freadholm operator (symbolizes
@ (X)) if nullity and deficiency of S are finite. Now we
can introduce the definition of an upper Weyl spectrum of
osr;(S) =M€ C:S —n €& ¢;(X)}. ind(S) pointing to
the index of § and defined as follows ind(§) = a(S§) —
B(S). The ascent of § € BL(X) is littlest non-negative
integer p = p(S) such that ker §# = ker S#*1, if there is
not such integer then ker §# # ker §#** for each p, then
»(S8) is infinite. And the descent of an operator § is
littlest non-negative integer g = ¢(S) such that $%(X) =
S§%+1(X), if there is not such integer S%(X) # S%*1(X) for
each g then g(S8) is infinite. According to [1], the ascent
and the descent are equal if p(S) and g(S) are finite.

A continuous linear operator § € BL(X) is Weyl if §
is Fredholm of index zero, whilst is said to be Browder if
S € e(X) and p(S), g(8) are finite. The Weyl, Browder
and Browder approximate point spectrum define as
follows

ow(S) = {n € C: § —n is not Weyl},
op(8) = {n € C: § — nis not Browder},
0ap(S) =N € 0,(5):n & @, (A )and p(S —n) = =}

An operator § € BL(X) is satisfies Weyl's Theorem if
o(8)\ow(S) = E%(S) and satisfies Browder's Theorem if
o(8)\ow(8) = M°(S) where E°(S) is the eigenvalue of
finite multiplicity and I1°(S) is poles of S. We can say
also a-Weyl's Theorem holds for § if 0,(S)\osz;(S) =
E2(S) and a-Browder's Theorem holds for S if o,(5)\
0577 (S) = NJ(S) where EJ(S) an eigenvalue of § of
finite multiplicity that isolated in approximate point
spectrum of § and M2( S) is left poles of § of finite rank.

And we continuous to narrate the theories, but before
this we will impose n is non-negative integer and
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§ € BL(X) define Sy to be restriction of § to R(S™) are
seen as a map from R(S™) into R(S™), [special case
S0 = & ]. For some integer n, if the rang space R(S™) is
closed and Sy, is an upper semi- Fredholm operator, then
S is said to be upper semi B-Fredholm, while if the rang
space R(SM) is closed and Sy, is a lower semi-Fredholm
operator, then § is called lower semi B —Fredholm. The
index of § is defined as the index of operator.

For § € BL(X), is called B —Weyl if it a B —Fredholm
operator of index zero, and so B —Weyl spectrum of § is
defined by og,, () = {n € C:§ —nis not B — Weyl}. So
we can say that an operator § achieves generalized Weyl's
Theorem if o(S$)\ogw(S) =E(S), and achieves
generalized Browder's Theorem if o(5)\ogw(S) = II(S),
where E(S) is an eigenvalue of § that are isolated in
spectrum of § and I1(S) is a poles of resolvent of S. The
class of all upper semi B —Fredholm operators we will
signal to him S§BF,.(X) whereas SBF (X) ={n€
SBF,(X):ind(S) < 0}, thus it will be defined the upper
B—Weyl spectrum is ospr;(S) ={n€C:S—n ¢
SBF-(X)}. Hence after definition upper B —Weyl
spectrum we call recall generalized a-Weyl's Theorem and
generalized a-Browder's Theorem alternately, ,c,(8)\
ospr; (8) = Ea(8) and  0,(8)\  ospr; (S) = I,(S),
where E,(S) is an eigenvalue of S that are isolated in
approximate point spectrum of § and II,(S) is a left
poles of §. Remain to mention the definition of Drazin
spectrum and left Drazin invertible spectrum, if § has
finite ascent and descent then S is called Drazin
invertible, the Drazin spectrum op(§) ={neC:sS —
7 is not a Drazin invertible}. An operator § is called left
Drazin invertible ( in symbol LD(X)), if LD(X) ={S €
BL(X): #(S) < o and R(§#*1) is closed}, and left
Drazin invertible spectrum is defined by o p(§) =
mecCs—meLlDX)}

Recall that a continuous linear operator § €
BL(X), has single valued extension property at a
point n, € C ( Shortly SVEP), if for every open disc
U centered at n, then only analytic function f:

U — A satisfying (§ —n)f(n) = 0 is the function
f= 0. Evidently, § has SVEP at every isolated point
of the spectrum, consequently, note that the single
valued extension property plays an important role in

Fredholm and spectral Theory.

We postulate that §; € BL(X;) and S, € BL(X;),
the tenors product of two operators S;and S, on
X,®X, is the operator §,®S, defined by
(81882) Xix1i®%,; = X $1%1i®8,%z;  for  all
YiX1i®x%,; € X;®X,. [6,8], if §; and §, satisfy
Browder's Theorem then §;®S, satisfies Browder's
Theorem if and only if the Weyl spectrum identity
ow(8185;) = 0y (51)0(S2) U oy (S;)0(S;) holds,
and if §; and §, satisfy a-Browder's Theorem then
§:®8, satisfies a-Browder's Theorem if and only if
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the upper Weyl spectrum identity ogz;(S;®S,) =

0575 (81)04(S2)Uosr; (82)0,(S1) holds.

2. Property (ao) and tensor  product

The most important findings of this paper is, if
S, € BL(X;) and S, € BL(X;) have property (ao)
then §;®S, has property (ao) if and only if the
upper Weyl spectrum identity osr;(S;®S;) =
0575 (81)0(S2) U 0577 (S2)0(S1) holds, also study
perturbation under a quasi-nilpotent operator for
these royalty, this is part of the study, While the
other is assume that §; € BL(X;) and §, € BL(X,)
are polaroid and §;7, §," have SVEP then §;®S,
has property (SZ), and study perturbation by
commutator a quasi-nilpotent operator for property
(SZ). The following lemmas help to reach the
desired results: [1, Theorem 3.23], If § € BL(X) has
SVEP atn € o(5)\osr, (5) then 1 € iso 0,(S) and
(S —1n) <oco. From [4] and [11] we get the
following results
i- 0,(5:8S,) = 0,(851)04(S;), where o, =0 or
Ox = Oy,
ii— o5, (51®2) =
05T+(51)Oa(52)U05T+(52)Oa(§1)1
iii — 057 ($:®$>) =
os7_(81)05(S2)Uosz, (S2)05(S1).

and proposition 3 in [12], we
iso 0($;®S,) C iso a(§;) iso o (S,).

Lemma 2.1 Lets,, §, are a continuous linear
operators in BL(X;) and BL(X,) respectively, then
0 ¢ 0(5;®52)\ sz, (51855).

proof: We assume that 0 € 0(5;®S,) that is
5;®S, is not invertible and therefore 0 €
iso 0(5;®S,) and from [1, Theorem 3.18], §;®S,
has SVEP. And 0 ¢ o5y, (5:®S,), so that §;®S,
has closed rang and 0 < a($;®S$,) < «. Since
5;®S8, is surjective and has SVEP then §,QS, is
injective [1, corollary 2.24], consequently S;and S,
are injective if and only if §;®S, is injective, we
obtain a($;) >0 or a(S;) > 0. But a(5;,®S,) is
infinite, this leads to a discrepancy
Lemma 2.2 Let §; € BL(X;) and S, € BL(X;),
then 057:_: (51®52) c

o575 (81)0(S2)Uosr; (S2)0(S1)

obtain

C
0ab(81)0(52) U0, (52)0(S51) = 0,45 (518S>).
Proof: The inclusion

osr; (81)0(S2)Uosr; (S2)0(S;) &
0ap(81)0(S,)Uo,,(S,)0(S,) verified because

o575 (S) S o4p(S) for all operator §. Now we must
prove that

0575 (81@83) € 057 (81)0(852)Uosz; (S2)0(Sy), let
N € 0557 (851)0(S2) Uose;(S2)0(Sy) as

s, ($188;) S 0557 (S1)0(S2)Uosr; (S2)0(S1)
implies that n # 0. Presume nj = 4+ be any
factorization of i, we obtain 4 € o(§;) and £ € o(S,)
and therefor £ € 0(S1)\osF; (S1) and ¢ €

0(52)\0s7;(S2)- Then £ € @, (S,), ind (§; — A) <
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0,and ¢ € @,(S,), ind (5, —¥) < 0. Consequently,
n &€ o5z, (5:®S,). The following requirement is
proven ind($;®S, — 1) < 0, assume ind(S; ®S, —
n) > 0, then a(§;®S, — 1) < o and so B(5; RS, —
n) < o thusn € 9(5,®8S,). Let A = {(A;, &), €
0(81)0(8,): A¢; = n}, where A is a finite set. And
calculate ind(§;®S, — n) we will use Theorem 3.5 in
[10], whereas ind($;®S, — ) = X[, ind(S; —
#;)dimH, (S, — ¢;) +

YL, ind(S, — #;) dim H, (S, — 4;), since ind(s; —
#;) and ind(S, — ¢;) are non-positive, This is
competitive. And so ind(§;®S, — 1) < 0 thus

N € o555 (51833).

Rest to prove
0ab (81@83) = 04p(S1)0(S2) U0, (S2)0(Sy). Let
nNé 0,p(5:®S;) then n€E @ (5:QS5,) and
(5808, — 1) < oo implies that n € iso 6(5;®S,).
For all factorization n = £¢ of n such that 4 € o(S;)
and ¢ € o(8,) that is A4 € @,(5;) and ¢ € ¢, (S,).
Asiso 6(5,®S,) c iso o(8;) iso 6(S,), then §; has
SVEP at A and S, has SVEP at £. Thus we have
p(S —A)<oo and p(S, — ) < o, therefore
A o(S;) and £€ 0,,(S,) and so né
0ab(81)0(82)U0,,(S2)0(S1).

We postulated

N € 0,5(51)0(5,)U0,(S,)a(S,), since n # Ofor

any factorization n = A¢ of ny such that 4 € o(S,),

L eo(S)and A ¢ 0,,(S1), £ & 04,(S2), then

h €@ (85), p(S§; —A) <cand? € @,(S,),

p(S; — ) < oo, implies thatn € ¢, (5;®S,) and

£ € iso 6(§;), £ € isoo (§,), thatisn €

iso 0(5,®S,). It follows that n € ¢, (5,®S,) and

2(S5:80S, — 1) < co. Hencen € 0,3, (5:8S,). So

we get the result.

Definition 2.3 [3] A continuous linear operator
S € L(A) is said to have property (ao) if o(§)\
osr; (S) = (S).

Proposition 2.4 Let § be a continuous linear
operators that the following are equivalent for §

i- property (ao)holds for §,

ii- 0,,(8) = 05?;(5)-

Proof: For every operators §, ogsz;(S) S
0a5(S). Let m € o(S)\ose;(S), since property
(ao) holds for § then n € I1,(S). But by Theorem
[3], property (Sab) holds for § then n € II2(S)
while that TI{(S) = 0,(5)\oa,(S). Therefore
0ap(S) € o577 (S).

Reciprocally, let n € [1,(S), that is n € 0,(5)
and n € opp(S). But 0,(8) € o(S) and 057 (S) <
o1p(S), then we get n € o(S) and n € os7;(S).
Thus  n € o(S)\osz;(S). Now, let ne
o($)\osr;(8). Since 0,p(S) = o577 (S) then
property (az) holds for S and therefore n € II2( S).
AsTI(S) c I(S), then i € TT,(S). Consequently,
property (ao) holds for S.

The following Theorem proves that the above
lemma validates for two directions if we add the
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condition §; has property (ao) and S, has property Duggal in [5, 9]defined the polaroid operator as
(ao). follows, if every isolated point of the spectrum of
Theorem 2.5 Suppose that §; € BL(X;),and S is the pole of resolvent of §, also n is pole of
S, € BL(X;), and both have property (ao), then resolvent of § if and only if 0 < p(§—1) =
5:®S8, has property (ao) if and only if 4(S —n) < oo. Or equivalent, an operator § €
0575 (8188,) = 0577 (851)0(52) U 0555 (S2)0(Sy). BL(X) is called polaroid if and only if there exists
Proof: We assume that S;®S, has property d=d(m) €N  such  that  He(§—n)=

(ao)then by above lemma we get the result.
Reciprocally, Since §;, §, has property (ao) then
oap(S1) = 05?;(51), 0ap(S2) = OsFy (S2).
According to the hypothesis
0575 ($1983) = 0577 (81)0(S52) U051 (S2)0(S1)
= 0ap(81)0(82)U0,,(82)0(S1) =
0,4 (85:®S,), thus §; ®S,, has property (ao).

Theorem 2.6 Let §; and S, have property (ao).
Then 0'5}'_:(51®52) =
o575 (81)0(852)Uosr; (S2)0(Sy) if and only if §;
has SVEP at every points 4 € @, (S;)and S, has
SVEP at every points ¢ € ¢,(S,) such that
0 #n = AL € 6(5:85,)\ 055;(5:8S3).

Proof: We assume that mn € o(5;®S5;,)\

osr; (518S5;) then n € 0(S185;)\ 0,4, (5:®S2),
because §; and §, have property (ao). For every
factorization 0 # n = A¢ of n such that £ € o(S;)
and ¢ € o(S,), we have £ € @,.(S5;) and ¢ €
@,(S,) And consequently p(§; —A) < oo and
(S, —¥) < oo. It leads to §; has SVEP at £ and
S, has SVEP at £.
Reciprocally, we must prove that
0575 (5185;) = 0577 (51)0(S2)Uos5; (S2)0(S1).
Enough to prove that
0ap(851882) S 0577 (5:@83). Let ne
0(5:1®8,)\ 0577 (5:8S;) then n € ¢, (5:8S;)
and ind(§;®35,) < 0. Hence for every factorization
0 # n = A¢ of n where £ € 6(§;) and ¢ € o(S,),
and 4 € ©.(5;), £ € ©,.(S,). Since §; has SVEP
at 4 and S, has SVEP at £ then p(§; —A) <
and p(S, — ) < . Therefore A ¢ 0,,(S;) and
& 0,,(S;). Thusn € 0,,(5,®S,).

Theorem 2.7 Let §; and S, be continuous linear
operator in BL(X;) and BL(X,) respectively. If S;"
and §," have SVEP then §;®S, has property (ao).

Proof: As ;" and §," have SVEP then satisfy
generalized a-Browder Theorem and consequently
S, S8, satisfy a-Browder Theorem. Then by
Theorem 1 in [8], a-Browder Theorem holds for
$18S;, Thus 0,,(8;®S;) = 057-(S;®S,). It
leads to property (ao)holds for §; ®S,.

Theorem 2.8 Let §; € BL(X;) and S, € BL(X,), If
S, and S, have SVEP then §;"®S," has property
(ao).

Proof: As &, and §, have SVEP then we obtain
by [1, corollary 3.73], S;" and §," obey a-Browder
Theorem. Consequently, §;"®S," obey a-Browder
Theorem. That is
0ap (S1'®S,") = 0577 (51" ®S,7). Evidently,
S§."®S," obey property (ao).
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ker(S — 1)1, for all n € isoo(S). Where Hy(S —

n) is a quasi-nilpotent part of § € BL(X)define as

follows Ho(§ — 1) = {a € X:limp_ |l
1

(S —m"alln = 0}.

Definition 2.9 [3] A continuous linear operator
§ € BL(X)is said to have property (SZ) if o(S)\
osr; (S) = E(S).

Theorem 2.10 Let §; € BL(X;) and S, €
BL(X,) are polaroid. If §;* and §," have SVEP
then §; ®S, has property (SZ).

Proof: Let's start with the imposition §;" and §,"
have SVEP, then we have

ow($1) = 05?;(51) =
ow(82) = 0577 (S2) = 0w (S2),
also we have §;, §, and §;®S, satisfies Browder's
Theorem, thus

0,(5188) = ow(5:8S,)

= ow(S1)o(S)Uow(S;)a(S,)

= 0w (S1)0(82)Uopw(S2)0(S,)
= GBW(51®52)

OBw (51)

0575 (81)0(852)U0s5-(82)0(81) = 0577 (85:®85).

As §, and §, are polaroid implies that §;®S, is
polaroid [6, Lemma 2], and consequently Weyl's
Theorem holds for §;®S,. From [7, Theorem
3.17], generalized Weyl Theorem holds for §;®S,,
thus 0(51852)\0pw (518S;) = 0(5:852)\
osr; (5198;) = E(5:®8,). Plainly, §;®S, has
property (SZ).

Theorem 2.11 Let §; € BL(X;) and S, €
BL(X,) are polaroid. If §; and §, have SVEP then
8§,"®S8," has property (SZ).

Proof: We assume that §; and §, have SVEP,
then we have from [1, corollary 2.5], [1, corollary
3.53], [2, Theorem 2.20]

ow(S:) = 05?;(51*) = opw(S1")
ow(S;") = 0sr;(8,") = 0w (S,
also we have §;%, §," and §;"®S," satisfies a-
Browder's Theorem and therefore Browder's
Theorem , thus

op(S1'®S,") = ow(S,"®S;")

= ow(81)o(S;)Uow(S;")o(S,)

= 0pw (81 )0(S;)Uopy (S, )a(S;7)
= 0gw (5, ®S,")

0575 (817)0(8;)Uosr; (S27)0(S, ") =
0sr; (81°®S,").
As ;" and 8, are polaroid implies that §;"®S,”
is polaroid [6, Lemma 2], and consequently Weyl's



Theorem holds for §,"®S,". From [7, Theorem
3.17], generalized Weyl Theorem holds
for §;"®S,", thus o(S5;"®S," )\opw(5:"®S,™) =
0-(51*®52*)\0-5}"; (8:"®S;") = E(8,"®S,").
Plainly, $;"®S," has property (SZ).

3. PERTURBATIONS

Assume [Q,8]1=08 —-8Q refer to the
commutator of operators Q,§ € BL(X). We assume
that 9,, @, in BL(X;) and BL(X,) respectively, are
a quasi-nilpotent operators [Q;,5;] =[Q,,8,] =0
for some operators §; € BL(X;) and §, € BL(X;),
hence (S; + 91)®(S, + Q) = (5:8S,) + 9, such
that Q=500 +5,89;,+9:,89; €
BL(X;®X,) is a quasi-nilpotent operator.
Remember the definition of isoloid operator,
§ € BL(X), is isoloid if iso 6(§) = E(S).

Proposition 3.1 Suppose that § € B(X) be a
polaroid operator then E(S) = I1(S).

Proof: As always we have II(S) € E(S), for

every operators §. Now, let n € E(§) that is
M € iso 6(S), since § is a polaroid then n € 11(S).
Therefore E(S) = I1(S).
Theorem 3.2 Suppose that Q,, 9, inBL(X;) and
BL(X,) respectively, be a quasi-nilpotent operators
[91,81] = [9Q2,8,] =0 for some operators
S € BL(X;) and §, € BL(X,). If §;®S, polaroid
then property (ao) holds for §;®S, implies
(81 + 91)R(S, + Q,) satisfies property (ao).

Proof: Observe that o(S$;®S,) = o((S; +
0)®(S: +Q2)), 0557 (S1882) = 0577 ((S1 +
0.)R(S; +Q2)), and that the perturbation of an
operator by commuting quasi-nilpotent has SVEP
if and only if the operator has SVEP. If property
(SZ) holds for §;®S,, hence
0(51®52)\05T+‘ (8185;) = 11,(5:®S>)

0((51 +0,)®(S, + Qz))\osaf;((gl +

921)8(S; + Qz)) = I1,(5:®53),

we ought prove that I1,($;®S,) = M,((S; +
0)®(S; + Q). Let 1 € I1,(5;®S,), it leads to
1 € o((S; +2)®(S, + 7)) and ne
057?;((51 +0.)®(S; + Qz)), also ne
iso 6(5;®5,). Clearly, if n € iso 0(§;®S,) hence
§°®S," has SVEP at 1 and therefore
I,(5,®S8,) =1(5;,®S5,),also we have (§"+
0:9)R(S," + 9,") has SVEP at 1, Implies that
n € iso o((S; + 91)®(S, + Q,)). Since §;®S, be
a polaroid it leads to §;®S, an isoloid then
n € E((S; + 91)®(S; + Q,)), consequently by
above proposition we get n € T1((S; + Q,)®(S, +
Q,)). Therefore, (S, + Q1)®(S, +Q,) satisfies
property (ao).

Theorem 3.3 Suppose that Q,, 9, inBL(X;)
and BL(X,) respectively, be a quasi-nilpotent
operators  [Q4,81] = [Q2,8,] =0 for some
operators §; € BL(X;) and §, € BL(X,). If §;®S,
isoloid then property (SZ) holds for $;®S, implies
(81 + 91)Q(S, + Q,) satisfies property (SZ).
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Proof:  Observe  that o(5;,®S8,) =
0((51 +0,)Q(S; + Qz))a Osry (5:®8,) =
osr ((S1+01)®(S, +Q;)), and that the
perturbation of an operator by commuting quasi-
nilpotent has SVEP if and only if the operator has
SVEP. If property (SZ) holds for §; ®S,, hence
0(51®52)\05T; (5:Q8,) = E(5,QS,)

0((51 +01)®(S; + Qz))\osaf;((gl +

Q1)®(52 + Qz)) = E(51®52),

rest we prove that E(S;®S,) = E((S;+

0,)Q(S, + Q,)). Let n € E(S;®S,), it leads to

ne 0((51 +0)®(S; + Qz)) and né

05?;((51 +0,)®(S, + Qz))' also ne

iso 0(8;®S,). Clearly, if n € iso 0(5;®S,) hence

§.°®S8," has SVEP at n and therefore (S;" +

0:9)R(S," +9,") has SVEP at n. Implies that

n € isoo((S; + Q)®(S, + Q,)). Since §;®S,

isoloid then € E((S; + 91)Q(S; + Q7).
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Abstract: Estimation of State-Space models together with joint
model selection, is a difficult computational problem. Recent
developments in convex penalization to least squares estimation
problems provide an elegant solution to this problem that needs
efficient optimization to be put to work in potentially large scale
settings. In this paper, we study an Alternating Method of
Multipliers for a penalized Subspace-type approach to State Space
estimation with a nuclear norm penalty. Our model takes into
account possible missing data. More-over, we show how creating
artificial missing data at random provides a simple approach to
hyper-parameter selection. Numerical experiments are proposed to
illustrate the performance of our method.

Keywords: ARMA, Low Rank, Nuclear, Norm, Penalization.

1. Introduction

A real valued random discrete dynamical system (x.}.zw
admits a State Space representation if there exists a discrete
time process s;,_, such that

Sey1 = As+ Key

x; = EBs; +Keg;

Where {e.).zx is the noise, and A g RF*F,
K = RP*L are parameter matrices.
The Auto-regressive with moving average (ARMA)
processes are sequences of the form (x ). y that satisfy

Xy =E?=1 E"i-“'r—i"‘E_?:j_f:'j‘?r—_i' T & 1)

for all tz= max{p.q}, where {(gJ,.x IS a sequence of
independent identically distributed random variables. Time
series model are relevant for a wide range of applications in
economics, engineering, social science, epidemiology,
ecology, signal processing,

It is well known that ARMA processes admit a State Space
representation and vice versa [7, 4].
Time series analysis is concerned with two estimation
problems.
The first is to select the orders p and g of the model.

The second is to estimate a=(a;.a;....3;) and
b = (by, by, ... bg)-

The model order selection problem is often performed using
a penalized log-likelihood approach such as AIC, BIC,....

We refer the reader to the standard text of Shumway and
Stoffer [7] for more details on this standard

problems.

E e RM™P,

Turning to the estimation of a and 1, it is well known that the
log-likelihood is unfortunately not a concave function, and
that multiple stationary points exist which can lead to severe
bias when using local optimization routines for such as
gradient or Newton-type methods for the joint estimation of a
and k. In [7,3], an iterative procedure resembling the EM
algorithm is proposed, which seems more appropriate for the
ARMA model than standard optimization algorithms.
However, no convergence grantee towards a global
maximizer is provided. A recent advance in the field was the
subspace method which turned out to be equivalent to
minimizing a convex criterion for the estimation of a State
Space model under stability conditions.

Since the recent successes of the LASSO in regression and its
multiple generalizations [5], penalization has gained a lot of
importance in computational statistics.

In particular, the nuclear norm has played an important role
for many problems in engineering, machine learning and
statistics such as matrix completion, ...

The goal of the present note is to study the nuclear norm
penalization in the subspace method framework for convex
minimization based ARMA estimation.

2. The Subspace Method

2.1 Prediction
The problem of predicting x,; for j= 0 based on the
knowledge of =xy, t' <t and s, can be solved easily
following the approach by Bauer [2,8,1].
For given initial values ;. &;, the State Space representation
gives
¥esh = € p + Lies BA T Key p_j + BA"s,
On the other hand, the State Space representation implies
that
se = Asp_y + Keyp
= Asp 3 + K%y —Bs;4)
= (A-KB)s;_, + Kx;_,

Thus, we obtain _
se = (A—KB) sp + ZIS0(A—KBY K%y

2.2 Prediction with Hankel matrices
We can rewrite the prediction problem in terms of some
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Hankel matrices as explained in [6].
Define

A=A—KBA, = [ &5, A sy, AT T 1s,]

B
K=[A_t"'K,...,A_:K.K], 0= B;%
Bﬂ;—i
And
1 0 0 - e 0
N = BE 1 U_ s 0
BA* K BA" K . . BK 1
Define also
p X HT-3t+1
. X My U HT-oot4s
:"'past: 51 : : : )
K1 % v Mg
Hyo Hpgg HT-t+1
. Kreg  Hez U FETorsz
Kpurure = : : : :
Hpp-1 Xt v HT

Both matrices are Hankel matrices. The first one represents
the past values and and second one the future values.
Define also the noise matrix

St Ct+1 ET-t+1

S+l S+ ET—t+1
E : p .
Brt-1  Sot v BT

Now, as explained in [6], we have the following relationship
hfl.]t1.1[‘E =0 K:"'pg_gt + D-'q[_\ + NE (2)

3. The Estimation Problem

Using equation (2) , it is easy to build a least-squares
estimator for the matrix L, [9].

In this section, we describe the nuclear norm-penalized
estimator proposed in [6].

3.1 Estimating O K

The matrix 0 K can be estimated using a least squares
approach corresponding to solving

Ll . :

;"}‘futurs - :"'put " E (3)

This procedure will make sense if the term 04, is small.

ming cgt=t

This can indeed be justified if tis large and if |lAll is small.
Let us call L asolution of equation (3).

3.2 Nuclear Norm penalized least squares for low rank
estimation
An interesting property of the matrix @ K is that its rank is
the State's dimension p when A if full rank. Moreover, O K
has small rank compared to t when t is large compared to p.
Therefore, one is tempted to penalize the least squares
problem in equation (3) with a low-rank promoting penalty.
One option is to try to solve

Ls E.b-ct 7 |}‘future L)"past” +Arank(L) (4)

The main drawback of this approach is that the rank function
is non continuous and non-convex function.

This renders the optimization problem intractable in practice.
Fortunately, the rank function admits a well-known convex
surrogate, which is the nuclear norm, i.e. the sum of the
singular values, denoted by . 1I. .
Thus, a nice convex relaxation of (4) is given by

Tmin

min - Wpasell +21ILIL ()
As is well known, the penalized least-squares problem (5)
can be transformed into the following constrained problem
ming cget LI subject to [[Xprure — Lépact [l < 1
for some appropriate choice of n,

The finite sample performance of this estimator was studied
in [6].

” E|.1t1.1rE

3.3 The case of missing future data
The problem of handling missing data in the matrix Xg, ;e IS
easy to state. Let n,, denote the number of observed entries
in KEIJUJIZ'E'
Let f: R¥T-2+1 _ RB=bs denote any operator of the user's
choice which extracts the observed entries of Xgpe and
stacks them into a real vector.
Then, based on the arguments of the previous section, a
reasonable estimator can be proposed as the solution of

ming cgoet = || 0 0urure) — ALKpee )| 3 + 2 IILIL (6)
for some appropriate choice of A.

4. An ADMM for Computing L

4.1 The standard case

Notice that equation (5) is equivalent to
min - || ¥ — M) § +2 LI,

subjectto M =L
The Augmented Lagrange function is given by

1 : 1 )
LMLY =5 e — s |+ LI + (0,3 - 1) +5 ollM — LI

Minimize L, for M@+% given L™ and U™, by finding the
gradient of L, with respect to M
VpLp (ML UH) = (% — Mx )t + UP + p(M— L)
setting the gradient to 0 gives
(% — I]+ﬂ:“‘p}:"‘p + UM 4 (MY 0] =g
Therefore,
hf:‘; _ M“*’-"XPXE + 0% 4 M0 11 = g
hf:‘; +U® o = g {:,\fkg —pD)
and thus

ML = {}\f:“; + Um _ F'LI:]:IJ{XpXE _ pU—L
Now, the next step is performed by computing the
approximation of L by solving the following problem of
minimization

me —p||L||p — p{M,L} —

Bt

-

(U, L} + ALl
= min ;pIILllé —{pM + U, L)+ AlILIl,

1 ) 1
=min 5p(lILIF -2 {M-I—ELT,L}] + ALl

[63]
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1 1 P
= min ;p{”L— (M +Eu3|| 3+ ALl

= F
SettingZ = M + i 11, we obtain the optimization problem

= min - |IL - ZII} +§JLIILII.
Thus, the solution is just defined by the thresholding operator
as
LO+Y = Thresh(M ™ + 2U®.%)

i)
The last step consists in updating U, which is simply done by

setting

LTI:]+£| — LT':T." + P{M':'HL" _ L':1+ﬂ:]

4.2 The case of missing data
Notice that equation (6) is equivalent to

1 2
min> lax; — oMl + AllLil,
subjectto M=L
The Augmented Lagrange function is given by
L1 2
Lp(M.LU) = = |3 — (M) ||

1) +pliM — LI

Minimize L, for MU** given L™ and U™, by finding the
gradient of L, for M

TuL, (ML U = 0° (0%) — 0(MX,) ) X] + U+ p(M - L)
setting the gradient to 0 gives

0° (00 — oMb 2 )i )3T +U® + p(MIY —LV) =0

Therefore, we obtain

+{U, M —

The signal

=]

'
o

| H\\IJ | |V i A i

-10

-15
o 50 100 150 200 250 300 350 400 450 500

Figure 1. One realization of the signal

Figure.2 illustrates the convergence of the ADMM method.
In all experiments, the stopping criterion was when the
relative error in the U variable went below 10™.

lllustration of convergence
0.45 — r-—r————
|

o4 b

0351

Least squares criterion
o
= ey =l
L5 h w

=]
o

0.05

ol s i . . N I =
2 4 6 8 10 12 14 16
ilerabon number of the ADMM

0° e 0% )XT — 0" e (MBI )xT + UY + pM ™ — pI'™ = 0 Figure 2. Decrease of the Least squares criterion as a

Which gives

0= 0(X) X3 + U -
This last equation may now be solved using the conjugate
gradient method.

Now, the next step is performed exactly as in the previous
case by computing the approximation of L by solving the
following problem of minimization

1 .
min, ;p"L”p—p{'\“I']”" Ly — (U®,L) + allLll,

whose solution is just defined by the thresholdlng operator as
L+ = Thresh(M1+2 ¢ = u'“ 4

P
The last step consists in updating 1, WhICh is simply done by
setting
LTIH'ﬂ LTITl-I- {\,I"Hﬂ L':1+ﬂ:]

5. Numerical Experiments

In this study we will perform some simulations with the
model

% = 1.4x,_, —.66x_, +.16x,_; —.023x%,_, —.012x, . +
e + LUy —de,_; + 24e 5 — Bl

with e, t=1,...,T independent zero mean Gaussian random
variables with unit variance.

Figure.1 shows a realization of the signal considered in this
section.

PL‘:[.:' =0 ﬂ{\{ I:]+ﬂx’p}x‘[:?+ p_\.I':'HL"

function of the iteration number for 5 missing data
and A =20.

5.1 Choosing the relaxation parameter i

A very simple way to choose the hyperparameter i is to
create artificially missing data in the set of future
observations and tune the value of A so as to minimize the
sum of squares of the errors of the estimator on these
observations. Figure.3 shows the error for different values of
A

Choosing A
& 35 T T
o
-
2
£ 3 .
8 /
E
=
=25
3
/
= /
Ig 20 /
: /
[=]
Pl
g '
5]
-
o
E 10 /
o
3
= y
5 @ /
S e =
@D g — =
0 5 10 15 20 25 30 35 40 45 50

A
Figure 1. Error on the artificially missing data for selecting
the best value for . Here, the best value is & = 20
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Conclusion

The goal of the present paper was to present a nuclear norm
penalised least-squares estimation procedure for ARMA
model selection and estimation where the time series is
corrupted by some noise and may have missing data. We
proposed an ADMM type algorithm for this problem and
studied the performances of the method on simulated data.
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Abstract: In the following text for Alexandroff square A ,and unit
square O (also equal to [0,1]x[0,1]) equipped with
lexicographic order topology if X €{A, O} for homeomorphism
f:X—>X we

ent,, (f)=0 if and only if f*
(where ent, (f) denotes set-theoretical entropy of f ).

have entg, (f)e{0,+0} moreover

is the identity map on X

Keywords: Alexandroff square, lexicographic order, set-theoretical
entropy.

1. Introduction
Several topologies have been introduced on unit square
[0,1]x[0,1], like induced Euclidean topology, lexicographic

order topology, Alexandroff square, etc.. In this text we
consider A :=[0,1]x[0,1] under topology generated by

basis consisting of [3]:

o {t}x(U\{t}) where t<[0,1] and U is an open subset
of [0,1] (as a subset of real line R),

e ([01J\F)xU where F is a finite subset of [0,1] and
U is an open subset of [0,1] (as a subset of real line R).

[ ]

On the other hand several entropies have been introduced,
e.g., topological entropy, algebraic entropy, adjoint entropy,
set-theoretical entropy, etc.. Here we deal with set-theoretical
entropy which has been introduced for the first time in [1].
For arbitrary set D, self-map A:D — D and finite subset

B of D the limit h(B,4) :=Iim%"wﬁ(8)| exists

n—oo

(where | K | denotes the cardinality of finite set K ). Define
set-theoretical entropy of A:D — D as sup{h(F,1):F

is a finite subset of D} and denote it with entg, (1) .

In this text we compute all possible set-theoretical entropies
of homeomorphism on Alexandroff square A.

Remark 1.1. For A:D— D, entg(4)=sup({n:there
exist X,,...,X, € D such that {2 (X)}esqr-- - £A (X1 ) st
are n pairwise disjoint one-to-one sequences }{0}) [1].

Moreover for t >1 we have ent, (A') =tentg, (4) .

Convention 1.2. Using the same notations as in [2], by
<X,y > we mean ordered set {X,{X,y}}, and by (a,b)

we mean open interval {zeR:a<z<b}, also in set
[01]x[0,1], let A:={<t,t>:t<[01]} and:
P, :=<0,0>,P, :=<01>,P; :=<11>,P, :=<10>,
L, :={0}x(0,1),L, :=(0,1) x{1},
L, ={1}x(01),L,:=(01) x{0}.

2. Set-theoretical entropy of homeomorphisms
of A

Lemma 2.1. For order preserving bijection f :[0,1]] —[0,1]
the following statements are equivalent:
e ent, (f)>0,

o enty, (f)=-+o,

o f2idyy,
i.e,, enty (f)e{0,+c} and enty, (f)=0 if and only if
f = id[O,l] .

Proof. Suppose f =#idp,y;, then there exists t [0,1] with
f(t) #t, without any loss of generality we may suppose
t< f(t) for n>1 choose t=X, <X, <---<X, < f(t),
then t=Xx <X, <---<X,<f(t)="F(x)<f(X,)<--
< f(x,)< F2(x) < F2(xy) << F2(x,)<--- and the
sequences  {f (X)) oqr - {F (X, )}sy are pairwise
disjoint and one-to-one, so by Remark 1.1 we have
ent., (f)>n.Hence entg, (f)=+o0.

Remark 2.2. In Alexandroff square A, for homeomorphism
f:A— A wehave f(A)=A also for all te[0,1] there

exists se€[0,1] such that f({t}x[0,1])={s}x[0]] in
addition g:[01] > [01] with f <t,x>=<s,g(x)> isa

homeomorphism. Moreover exactly one of the following
conditions occurs [2]:

o f(P)=PR(i=1234) f(L)=L,, f(L;)=L,,
f(P)=pP;, f(R,)=P,, f(P)=P, f(P,)=P,,
f(Ll) = |-31 f('—s) = I—1-
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Theorem 2.3. In Alexandroff square A, for
homeomorphism f : A — A the following statements are

equivalent:

e ent,, (f)>0,

® entset(f) =+,
o 42 id,,

ie, ent, (f)e{0,+x} and ent, (f)=0 if and only if

set

f*=id,.
Proof. Suppose enty (f)>0. By Remark 1.1, we have

set

ent., (f?)>0. Moreover considering homeomorphism
f2:A—>A by Remark 22 we have f2(Pi)=Pi

(1=12,34), also f2 |:A—> A is a homeomorphism.
Note that A as a subspace of A has the same topology as a

subspace of plane RZ. Considering homeomorphism
h:[01]—>A with h(t)=<t,t>(te[01]), we have

homeomorphism  h™'o f2|, oh:[01] —>[01]  with
(™o f2], oh)(0)=(h""o f?|,)(P)=h""(P,)=0 and
(™o £2], och) (@) =(h™ o f2[)(P) =h7"(Py) =1, so
h™of?|, oh:[01]—>[01] is an

homeomorphism. Hence ent, (h™ o f?[, oh) e{0,+c},
by Lemma 2.1. We have the following cases:
o Case 1: entg (h™'o f?], oh)=+w. By [1] we have

ent., (h™o £2], oh)=ent,, (f?|,)<ent,(f?), so

enty, (f2) =+  which
entg, (f)=+oo by Remark 1.1.

o Case 2. enty(h™'of?|,oh)=0. By Lemma 2.1,
h™o 2], ch=idyy, f2|,=id,. For all
te[01], by
g,:[01] > [01] with f2<t,x>=<t,g,(x)> is a

order preserving

in this case leads to

thus

f2<tt>=<tt> and Remark 2.2

homeomorphism, hence g7 :[0,] —[0,1] is an order
preserving homeomorphism and ent., (92) € {0,+o},
using Lemma 2.1, we have the following sub-cases:

o Sub-case 2-1: ent(gZ)=0 for all te[0]1]. By
Lemma 2.1 for all te[0,1] in this sub-case we have
xe[0,1] we

gfzid[oyl], thus for all have

f*<t,x>=f?<t,g,(x)>=<t,g2(X) >=<t,x >, s0
in this sub-case f* =id, .
0 Sub-case 2-2: ent, (g2) =+ for some t<[01].

By Remark 1.1 for all n>1 there exist X,..., X, €[01]

such  that {thk(Xl)}kzll""{thk(Xn)}kzl are N

pairwise disjoint one-to-one sequences, however for all
k>1 and ief{l,...,n} we have

2 <t,x, >=<t,97(x,) >, thus

{F% <t % Shorr o LF <t X, >}hes
are n pairwise disjoint one-to-one sequences, SO
ent, (f°)>n which leads to entg, (f?) =+ and
enty, (f)=+oo by Remark 1.1.

Using the above cases (and sub-cases) the proof is
completed.

3. Set-theoretical entropy of homeomorphisms
of lexicographic ordered unit square

Consider lexicographic order < on [0,1]x[0,1], such that

for <x,y><z,w>€[01]x[0]], let <X,y >=<<Zz,W>

“x<z”or“x=z and y<w". Suppose O:=[01]x[01]

equipped with lexicographic order topology. In this section

we compute set-theoretical entropies of homeomorphisms on

O.
Remark 3.1. In homeomorphism f:0O—> O for all

te[01] there  exists se[01] such  that

f{t}x[01]) ={s}x[0,1] in addition g:[0,1]—[01]

with f <t,x>=<s,g(x)> is a homeomorphism. Moreover

exactly one of the following conditions occurs [2]:

o f(P)=PR,f(L;)=L;(i=1234),and f:0O—>O0 is
order-preserving,

o f(P)=P;, f(P)=P, F(P)=P, f(P)=P,
f(L) =L f(L)=L, f(Ly)=L,, f(Ly)=L,,
and f :O — O is anti-order-preserving.

Theorem 3.2. For homeomorphism f:0— O the

following statements are equivalent:
e ent,, (f)>0,

o enty, (f)=-+o,

o f22idg,

i.e,, enty (f)e{0,+c} and enty (f)=0 if and only if
f2=id,.

Proof. Suppose ent. (f)>0. By Remark 1.1, we have
ent, (f?)>0. By Remark 3.1 for order-preserving
t2(P) =P,
f2(L;)=L,(i=12,3,4). Using similar method described
in the proof of Lemma 2.1 we have: ent., (f?) e{0,+x}

and ent, (f?)=0 if and only if f?=id,. Use
Remark 1.1 to complete the proof.

homeomorphism f2:0—>O we have

Example 3.3.  Define with

o(t):=1-t (t[01]) and

o, 1:[01]—[01]
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(1) = 1-2t* te[0,4],
A=) B e,

also consider f,g:[0,1]x[01] —[0,1]x[0,1]  with
f <s,t>=<@(s),p(t) >, g<s,t>=<u(s),u(t)> (for
<s,t>e[0,1]x[0,1]). Then:

e f,g:A—> A and f,g:0O — O are homeomorphisms,

d f ? = 92 = id[0,1]x[0,1] thus entset( f ) = entset(g) = 0,

o (gof)’(3)=% and enty(gof)=+0 by Theorem
3.2.
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1. Introduction

One-sided shift {1,....k}" —>{L...,k}"¥ and two-sided

(X3, Xp, ) (X2, Xg,7)
shift {1,....k}* > {L....,k}* are amongst most studied
(Xn)nsZH(xn+l)neZ

maps [6]. Consider arbitrary sets A,I" with at least two

elements and ¢:T—>T, we call o,:A" > A" with

0, ((Xs) wer) = Kpay)aer (Xo)ger € A") a generalized
shift (as a generalization of one-sided and two-sided shifts)
which has been introduced for the first time in [2].
Dynamical and non-dynamical properties of generalized
shifts have been studied in several texts like [3, 5].

It is well-known that for each (complex) Hilbert space H
there exists a unique cardinal number 7 such that H and

/() ={(x,),., €C* :OET | X, [P<+} (equipped with

inner product < (X,),-,,(Y,)

a<t

1(X,)per I= /a§r|xa ), where C denotes the field of

complex numbers. So for @:7—>7 one may consider

[2(1)252(7)—>C’. As it has mentioned in [1], the

following

>= X X, Y, and norm
a<t

0'(/)|

statements are  equivalent (note that

o, :C" — C isalinear map):
o 0, Lo (@) 2(0),
(13(r)) < 4*(r) and o, |.,.,: 02 (z) > (2(7)

* Ty | %(7)"

3(z)
is continuous,
e @:7— 7 isbounded, i.e., there exists K N such that

forall @ e7 theset ¢ *(a) hasatmost K elements.
In the following text we consider the following Banach space
(equipped with norm [/(X,,) ... [L.=sup|x, |):
a<rt

02(7) ={(X,) 4, €C :1sUp| X, |< +0}

a<t

we study o, |€“°(r)'

2. Resultson o, L)

In this section suppose 7 >2 is a cardinal number and
@ T — 7 is arbitrary, as our first steps we prove the

following theorem.
Theorem 1. We have the following statements:

a. o,(l*(r)) = (7).

b. o, |/x(f): 07(zr) —> £”(z) is continuous and (note that

o, 1y ESUPlllo, (D)l 2 €7 ()1 2]l < 13):
(RPN S
c. the following statements are equivalent:
1o, (= (2))=0"(7),
2. 0,(0"(z)) isdensein (*(7),
3. ¢ 17 — 7 isone-to-one.
Proof. a, b) Consider x =(x,),., € ¢*(r), then
” O-¢ (X) ”oo :” O-go ((Xa)a<‘r) ||oo :” (X¢(a) )a<z‘ ”ao

=SUP [ X,y |<SUP[X, [FI (X )aer [ =l XL
a<t a<t

and |lo, () [l <IIx]l,, hence o,(x)el*(zr), also
o, |/*(r): 07(z) > 7 (7) is continuous and
o, |¢“(r) |I<1, on the other hand (1),., €/ (zr) and

lo, (D)) =11 (1) o<, [l,=1 which completes the proof

ﬂ(r)ll:l'

c) We complete the proof by showing “(2)= (3)” and
“B)= )"
(2)= (3): Suppose ¢@:7— 7 is not one-t-one, choose

B <0<z with p(B)=¢(0).Let q; =1 and q, =0 for
a#f. ThenU ={xe(”(7):|x-(q,)

of [[o, |

l,<%} isan

a<t

open neighborhood of (q,),., (€ £*(z)), moreover for all

a<rt

(X,)ger €L7(7) we have
1o, (X) = (A ) aee o =l (Xga) ) aer = (A ) e Lo
=sup | X(p(a) — g |2 maX(l Xq;(ﬂ) - qﬂ |’| Xgp(@) —0y |)

a<t

= max(| X,z =111 Xy00) 1) Z 5 (1 Xp08) =11+ X0 1)
p(B)=p(0)
_ 1 1 _ 1
= (X =L+ X5 D 251X 05) =1=Xp5) F 5

[69]
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thus o, (¢*(r)) "U isempty and o, (¢ (7)) is not dense
in (°(7).
(3)=(1): Suppose ¢@:7 — 7 is one-to-one and choose

X = (%) ger € £7(7) define y=(y,,),.. with

X5 B<ra=9(p),
Yo '_{ 0  otherwise.
Then
||y||w=satig| Yo |=as;1(|%) | X4 Iés:iglxa =[xl < +o0

and ye s (T) . Moreover O-ga(y) = (y(p(a))a<r = (Xa)a<z‘
which completes the proof.

Let’s recall that in Banach spaces X,Y we say linear
continuous map T :X —Y is a compact operator if

{T (x) ;|| x||< 1} is a compact subset of Y [4].

Theorem 2. o, |(°°(r): 17(r) > 17 (1)
operator if and only if ¢(7) is finite.

Proof. First suppose ¢@(z) is infinite. Choose one-to-one

is a compact

sequence {«; }i5; in 7 such that {@(e;)}s, is a one-to-one

sequence too. For each i >1 let x, = (x!),_._ € ¢ (r) with

a<rt

Xi

i

1 and x, =0 for a#a;. Then for i# j we have
lo,(x)—o,(x;)|l.=% and {o,(X;)}; does not have
any convergent subsequence however {X;}., is a sequence
in {xe*(@):Ix|l, <% so o, |mr):£°c(r)—>£°°(r) is
not compact.

Now suppose ¢(z) is finite, in this case o, (r"(z)) is a

finite dimensional subset of o, (/" (7)), thus its closed
bounded subsets are compact, using Theorem 1,
o {xe (@)Xl <Hc{xe () :lIx]l.<1}) is a

bounded subset of o, (¢” (7)), which leads to the desired

result.

3. Generalized shifts on subspaces of ¢~

As it is common in the literature, for the least infinite
cardinal number @ ={0,1,2,...} we denote ¢/*(w) by ¢”.

Consider the following subspaces of ¢ :
050 ={(Xy)new € L7 1IN VN2> N X, =0}
Coe ={(X)new €7 :F2IN VN2 N X, =7}
05 ={(Xy) peo € £7 2 lim x, =0}

N>+

0% ={(Xy)new € L7 132 lim x, =0}
nN—-+0

thus (o, clp clp <™ and (g ly. < lp < /™. In
this section consider ¢ : 0w - ®.

Theorem 3. The following statements are equivalent:

1 %(ﬂ‘&)) <o,

3. for all new the set @ *(n) is finite (i.e., ¢ is finite
fiber).

Proof. “(2)= (3)” and “(1) = (3)”: Suppose there exists
p e such that @ *(p) is infinite. Consider u=(u,),.,,

with u; =1 and u, =0 for n=p. Then we have
uelo(=Ls Nly) and o,(u)ely(=L5 Uly), thus
notonly o,(¢y)Z £y, butalso o, (£5) Z g -

(3)= (1): Suppose (3) is valid and (X,)
there exists N ew such that for all
x,=0. Since ¢ is finite fiber, @ '({0,...,N}) is finite
and m=max(p " ({0,...N})u{0})ew. So X, =0

€ ly,, then
n>N we have

n<w

p(n

forall n>m+1. Hence o, ((X,)ne0) = (Xp(n))new € Lo0 -

(3)= (2): Suppose (3) is valid and (X,),., €’y . then

lim x, =0 and for every & >0 there exists N € @ such

N—-+o0

that forall N> N we have | X, |< ¢ . Since ¢ is finite fiber,

m=max(¢p *({0,....Nhu{0)ew. So for all

n=m+1 we have |X, ., |<&. Thus lim x_ ., =0 and
@(n) o

oo @)

O, ((Xn)n<w) = (X(p(n))l’K{U € [())O :

Theorem 4. The following statements are equivalent:

1 o,(lo) = Lo

2.0,(65) = ts,

3.forall new “@'(n) is finite” or “@\ ¢ ' (n) is finite”.
Proof. First suppose there exists p € w such that both sets

¢ *(p) and @\ *(p) are infinite. Consider u=(u,),.,
with u, =1 and u, =0 for n=p. Then we have

ue [E)Oc(: [t):o mf‘&), let (Vn)n<a) = (u<p(n))n<w =0, (u).
Using infiniteness of @ '(p) and @w\¢@ (p) there exist
m, <m, <--- in @ '(p) and there exist k; <k, <--- in

o\p'(p) thus limv, =1 and limv, =0. Hence
n—o n n

n—oo

limv, does not exist and &, (u)=(V,),, & (¢ - So not

n—oo
only o,(lg)zly, but also o,(lg)Z lo. Thus
“(2) = (3)” and “(1) = (3)".
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(3)= (1): Suppose (3) is valid and (X,),., € oc. then

there exists N e® such that for al n>N we have

X, = Xy =Z . We have the following cases:
Case 1: ¢ is finite fiber. In this case ¢ *({0,...,N}) is
m=max(¢ '{0,....NhHuU{0})ew. So
n=m+1.

finite and

Xpn) =12 for all Hence

7, (X1 )neo) = (Xp(m)Jncw € Loc-

Case 2: there exists p e such that @ *(p) is infinite. So
in this case @\ '(p) is finite and there exists M € @
with @\ *(p) {0,...,M}. Forall n>M +1 we have

nep*(p) and p(n) = p, hence X,(ny = X, Which shows

7y (X)) = (Xo(m) Jncr € Loc
(3)= (2): Suppose (3) is valid and (X,)
{X,},., is a convergent and hence Cauchy so for every
&>0 there exists N € @ such that for all nm>N we
have | X, — X, |< & . We have the following cases:

el then

n<w

Case 1: ¢ is finite fiber. In this case ¢ *({0,...,N}) is
finite and M = max(¢ *({0,...,N}) u{0}) ew. So for
all nnm>M+1 we have ¢@(n),p(m)>N

[ Xpm) = Xpqmy < & -

therefore

Case 2: there exists p e such that @ *(p) is infinite. So
in this case @\ '(p) is finite and there exists M €
with o\¢*(p)<{0,...,M}. For all nm>M +1 we
have X,y = X, = X, (m) Which shows X,y =X, m [=0<¢.

there exists M e with
nm>M +1. Therefore

Using the above cases,

{X,(n)}n<w is @ Cauchy hence convergent sequence in C.

Therefore &, (X, ) new) = (Xp(n) ) new € 7.
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1. Introduction

Our main aim in this text is to study the concept of
forwarding (backwarding, stationary) chain in sub-categories
of Self-maps in category Set.

In the category C suppose M is a nonempty chain of sub-
categories of C (under the inclusion relation, so elements of
M are sub-categories of C and for each ,feM we

have ac f or fca (since M is a chain)). Also

suppose h: UM — UM isamap. We say M is [1]:

¢ a forwarding chain with respect to h if forall x e M we
have h(UM\x)cUM\k (e, h(UM\x)nk is

a full-forwarding chain with respect to h if it is

forwarding and for all distinct x,4,ue€M with
Xellk with

KcAcu there exists
h(X)e u\1,
a backwarding chain with respect to h if for all x € M

we have h(x) c «,

a full-backwarding chain with respect to h if it is
backwarding and for all distinct «,A4,u€ M with

kcAcu  there  exists Xeu\A  with
h(X)eA\x,
e a stationary chain with respect to h if it is both

forwarding and backwarding chain with respectto h .
Let’s recall that for equivalence relation E on X and

Xxe X we have é::{y e X:(X,y) e E} and quotient

space é:z{é:ZeX}. Also X, denotes the least

infinite cardinal number, i.e., card(N) =N, (where N is
the collection of all natural numbers).

For self-map f:X — X consider two equivalence

relations 3; and R; on X with (see e.g. [2]):
(x,y)e3; < f(x)=1(y),
(x,y)eR; & @Anm>1 £'(x)=1"(y)).
In this text for cardinal number 7 >1 suppose:
f
e D, :={X — X :cardinality of the quotient space ; is
g
less than 7},
f X
e E, ={X — X:cardinality of the quotient space o is
f
less than 7}.

We denote the sub-category of Set consisting of self-maps by
SSet and will denote self-map f: X — X by (X, f).

2. First operator: k times self-composition

In this section consider k >2 and h, :SSet — SSet with
h (X, f)=(X, f*) (where f¥=fo...of (k times)).
Lemma 1. For (X, f)eSSet we have 3; =3, and

X

~

fk

thus  card(

R, =9, Jscard(Z)  and
~f

card( X

X
)=card(—).
£k SRf
Proof. For each (X, f)eSSet and (X,y)e3; we have
f(x)=f(y) thus fx)=f*(y)and (X y)e3 .

therefore 3¢ < 3« and

X

X
——) <card(——). Moreover,
~ fk ~f

is onto, hence card(

X,y € X we have:
(X,y)eR, Inm=1(f"(x)=f"(y))

[72]


mailto:fatemah@khayam.ut.ac.ir
mailto:haghjooyanmaryam@gmail.com

SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS

<anm=1(f™(x) = f™(y))
< 3Inm=1((F)" () =(f)"(y))
S(Xy)eR ..

Which leadsto R =% and completes the proof.

Theorem 2. Consider sub-class M of

{SSet}u{D, :7>1}:
a. M is backwarding with respect to h, .

nonempty

b. M is forwarding (resp. stationary) with respect to h, iff
M s singleton,

Proof. (a) By Lemma 1, h(D,) < D, for each 7 >1, thus
h(UM)cUM and M is backwarding with respect to h, .

(b) Now suppose M has at least two elements and consider
distinct elements H,K e M with H < K. There exists

7 >1 with H =D, . Choose cardinal number & >0 with
7 =6+1. Consider arbitrary set A with card(A) =6 and
be Ax{01} (e.g., b=(0,-1)). Let X =(Ax{0,1}) u{b}
and define f:X — X with f(a,0)=(a)}), f(al)=b
and f(b)=Db.Then

®— {(@0)}:2 € AFUT(AS ) LD}

3
X

and card(—)=60+1=7. Thus (X,f)gD,=H and
St

for each y > 7 we have (X, f)e D, —SSet, in particular

(X, f)eK\CcUM\C. On the hand
X

= =
\fk

Therefore, M
respectto h;.

other

{X}, hence h(X,f)=(X,f*)eD,cD,=C.
is not forwarding (resp. stationary) with

Corollary 3. Each nonempty sub-class M  of
{SSet}U{E,:7 >1}, is stationary (resp. forwarding,

backwarding) with respect to h, .
Proof. Use Lemma 1.

3. Second operator: finite k times self-product
For k>2 h, : SSet — SSet
h, (X, £)= (X5 f) feyne - i) = (F (v F (V) -

Lemma 4. Consider (X, f) eSSet :
1. we have:

consider with

) k <Ny éisfinite,
R
card(i(—) = {card(é)} f
3

S

= card(;) otherwise.
Sy

In particular for 7e{0:0=2v02>X,}, (X,f)eD, iff
h,(X,f)eD,.
2. we have:

k

X Xk X
card(—) <card(—) <| card(—) | .
(ER) (m ) [ (ER J

f fi f
In particular for 7e{f:0=2vO0>N;}, (X, f)eE, iff
h,(X,f)eE,.
Proof. (1) For (X, =+, X ), (Y1, Yy ) € X we have:
(g X )y (Y0 Yi)) € I,

< (X %) = fi(yn - i)

< (F0x), () = (FLy),--, £(Yi))

S (X Y1) (X Yi) € ¢
S0

k
k
is bijective and card(f ) = {card(é)} .
3

~ ~ i
(2) For ((Xg, = X ), (Y1577, Vi) € R, there exist n,m >1

with (X, %) = £ (YY) thus  for  all

iefl,... .k} we have f"(x;)=f"(y;) and (X;,Y;) € R

SO
k
Xk X
__> J—
R R,

(Zu-wzk)H(i,..i
Ry, R, Ry

XK x )
is onto, thus card(——) <| card(—) | , moreover
X Xk

—_—

Ry Ry
k

2, (22)

Re | Ry

: X XK
is one-to-one, hence card (?) < card (s—) .
f f,

Theorem 5. Consider nonempty sub-class M  of
{SSet}{D, : 7 > 1} we have:
1. The following statements are equivalent:
. hz (UM) - UM,
b. one of the following conditions occurs:
M ({SSet}U{D, :7 > N,}) is nonvoid,

o MN{D, :7 <X} isinfinite,

e M={D,},

¢. Dy, cUM or M={D,},
2. M is forwarding with respect to h, iff h,(UM) UM,
3. M is backwarding (resp. stationary) with respect to h, iff
M c{SSet}u{D, : 7 2N8,}u{D,}.

<))
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Proof. (1) (@ = (b): Suppose h,(UM)cUM,
M ({SSet}u{D, :7>N,}) is empty, and
MN{D, :7 <N} is finite, then there exist

M <--<ng=p<N, with M={D, :1<j<s}.  So
UM=D,, if p>2 then consider X ={L...,p} and

f:X—>X with f(i)=i+1 for i<p and f(p)=p,
therefore

Si:{{i}:lsis p-2luffp-1 p}},
f

Card(é) =p-1l<pand (X, f)eD,.ByLemma4(l),
35

XK .

—)=((-D"22(p-1>p

3¢,

and  h,(X, f)=(X" f)eD,=UM

contradiction with h,(UM)cUM. Hence n,=2 and

M Z{Dz}-

(b) = (c): It’s clear by definition of D, s.

(c) = (a): Since for each transfinite cardinal number 7 we

have 7¥=7 by Lemma 4(1) for each transfinite cardinal

number 7 we have h,(D,)c D, =D,

2<n<¥, we have h,(D,)cD

card(

which is in

also for each

(1 S Dy, moreover

h,(D,) < D, which leads to the desired result.

(2) Use (1) and Lemma 4(1).

(3) First suppose M c{SSet}u{D, :7>NX}u{D,},
then by item (1), h,(UM) cUM. Using Lemma 4(1), M is
backwarding and stationary with respect to h, .

Now suppose M is backwarding with respect to h, and
M ¢ {SSet}U{D, : 7 2N,}u{D,}. Then there exists
finite p>2 with D,eM. Using the same method
described in the proof of “(a) = (b)” in item (1), there
exists (X, f)eD, with h,(X,f)eD,, which is a

contradiction and completes the proof.
Theorem 6. Consider nonempty
{SSet}U{E, : 7 >1} we have:
1. The following statements are equivalent:
. hz (UM) c UM,
b. one of the following conditions occurs:
M ({SSet}U{E, :7 > N,}) is nonvoid,
M N{E, :7 <X} isinfinite,

« M={E,},

¢. Ey, cUM or M={E,},
2. M is forwarding with respect to h, iff h,(UM)c UM,
3. M is backwarding (resp. stationary) with respect to h, iff
M c{SSet }U{E, : 7> X }U{E,}.

sub-class M  of

QD

Proof. For finite p>2 consider X ={1,...,p-1} and

identity map f:X — X, then card(L) =p-1 and
XX ERf

k
(X, f)eE,. However, Card(;—)z(p—l)k >p and
f

k

h,(X, f)¢E,. Use Lemma 4(2) and a similar method

described in the proof of Theorem 5 to complete the proof.
Note 7 (infinite self-product). For arbitrary infinite set T

consider h:SSet —SSet with h(X,f)=(X",f.) with

fe((X)icr) =(F(X;))icr-  Then  using
described in the finite case for each (X, f) €SSet we have

X r X card(T")
card(——) = (card (T)J
3

fr S

X r X card(T")
) <| card(—) .
Ry R fr Ry

similar  method

and

card (‘L) < card(

Thus  for any  nonempty  sub-class M of
{SSet}u{D, :z>1} with SSeteM, M is
forwarding with respect to h. Also for nonempty sub-class
M of {SSet}u{D, :r>2%"M0} M is stationary
with respect to h. Also for any nonempty sub-class M of
{SSet}U{E, :>1} with SSet e M, M is forwarding
with respect to h. Also for nonempty sub-class M of
{SSet}U{E, : 7> 2%} M is stationary with respect
to h.

4. Third operator: disjoint union

Consider arbitrary set I" with at least two elements and
hy:SSet —»SSet  where  hy(X, f)=(XxTI,fg) and

fry (% 7)=(f(x),7) (as a matter of fact one may consider
hy (X, f) "looks like" T copies disjoint union of (X, f)).
Lemma 8. For each (X, f) e SSet we have:

card(

XxTy _ card(r) card(Z2)
fir) Sy
and

card(X <D

) = card(I') card(=-)
fir) Ry
Proof. For each (X, f)eSSet and (x,i),(y,])e X xI'
we have:

(DY DD ey, & (xy) e Ty Ai=]
and

(% ).(y, D) ey, & (xy)eR; Ai=].
Thus:
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X xT X T

\Sf(r) 3
(1‘7)|—>( z )
Sty S

and

X xT X «T

ERf(r) Ry
Ez’y) )

are bijective which lead to the desired result.

Theorem 9 (finite disjoint union). For finite I" (with at
least two elements) consider nonempty sub-class M of
{SSet}u{D,:z>1} and nonempty sub-class M’ of

{SSet} U{E, : 7 > 1}, we have:
1. The following statements are equivalent:

a. hy(UM)cUM,

b. one of the following conditions occurs:
M ({SSet}u{D, :7>N,}) is nonvoid,

e MN{D, :7 <N} isinfinite,

c. Dy, < UM,
2. M is forwarding with respect to h, iff hy(UM) c UM,
3. M s backwarding (resp. stationary) with respect to h, iff
M c{SSet}u{D, : 7 >N},
4. The following statements are equivalent:

a. hy(UM) cUM’,

b. one of the following conditions occurs:

M’ ({SSet }U{E, :7>N,}) is nonvoid,

M’ {E, :7 <N} is infinite,
. By, cUM’,
5. M is forwarding with respect to h, iff h,(UM’) c UM’,
6. M’ is backwarding (resp. stationary) with respect to h,
iff Mc{SSet}U{E, :7>N,}.
Proof. For finite p>1 consider X ={l,...,p—1 and

o

identity map f : X — X as in the proof of Theorem 6, then
XX

card(i)zcard(i)zp—l and (X, f)eE,nD,.
Sf SJE{f

However

card()ixr) = card(f( all

fir) fioy
and hy(X,f)eD,UE,. Use Lemma 8 and a similar

)=(p-21) card(') > p

method described in Theorems 5 and 6 to complete the
proof.
Note 10 (infinite disjoint union). For infinite IT" and

nonempty sub-class M of {SSet}uU{D, :7>1} with
SSet € M, M is forwarding with respect to h;. Also for
nonempty sub-class M of {SSet}U{D, :7 >card(I')},
M s stationary with respect to h,. Also for any nonempty

sub-class M of {SSet}U{E,:z>1} with SSete M,
M is forwarding with respect to h;,. Also for nonempty sub-
class M of {SSet}U{E, 7z >card(I')}, M is stationary
with respect to h;.

5. Fourth operator: induced map on power set

For arbitrary set X and cardinal numbers 4,6

let
P (X)={Ac X :0 <card(A) < 9}
P(X)={Ac X :card(A) < 8},
and h, :SSet —SSet with h, (X, f) = (P(X),P(f)) eSSet
where P(f)(A)=f(A)(={f(X):xe A}) (for Ac X)
he?(X, £)=(P<(X),P<’(f))eSSet as the

P</(X), ie.

also

restriction of the above self-map to

<3
P(H) =P(1) o
Lemma 11. For 1<k <, we have:

X P<k +1 X X 2k-1
card(—) < card(~—()) < [card (7)] +1.
3 2

f \Sp<k+l(f) sf

In particular  for infinite ; we have
Sy
<k+1
card (;) =card (FL—(X)) .
\s f P<k+1( f)
Proof. For each nonempty ABeP*?(X) (e

A BeP (X)) there exist X;,...,X,Yq-.., Yy € X
(may be not distinct) with A={x;,..., X, },B={y;,..., YV, }-
Now for (X, f)eSSet and nonempty A BeP™*"(X)
(A/B) ESP<k*1(f)
A={X,....x, 1, B={Yy;,.... ¥, }, we have
P £)(A) = PHL(£)(B)

thus {f(x,),..., F(x)}={f(yy),...., T (yy)}, so for each
ie{l,... Kk} there  exist s;,t e{l,....k}  with
f(x)=f(y,) and f(y;)=f(x,). Without any loss of
generality we may assume f(x;)= f(y;) and s, =t; =1.
Thus
QECIRE A CD I ECD AR AC)

= (FQyg) o Ty ) Y2 £ (V))

using the same notations as in the Second study we have
Farca Xy X X e X ) = Faca (Vg oo s Vs Yaur e Vi)
and((Xl"“’xklxtz’”"th)l(yslv"'lysk’yZI"'lyk))Esf2k_1
moreover, clearly we have

Do X Xy e X F =00 X 3

and  {Yys . Ys o Yo Y ={Yi Y} Hence  the
following map is onto

with and
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<k+1
{(Zi)lsiqkl IC&I’d{Zl, sz 1}< k 520 A7/ I:)>0 (X)

~
N} fzkfi sP<k+l(f)
(z )1£i52k71} {7254}

Stk ~‘p<k+1(f)

P<k+l( ) P<k+1 X

(by —=————= we mean except the equivalence

P
\SP<k+l(f) \5P<k+1(f)

class of empty set).
Therefore (use the Section 3 t00):

okl 2k-1
X )—(card(—:( )J )
RE 3

2k-1

2kl 2k-1
): )+1=[card(§)} +1
3

f

<k+1( )
card(—=>——) < card(——
P<k+1( f)
hence:

<k+l( )

card(——————) <card(

p<kl(f) foa

Moreover:
X

~

Sy

<k+1
LX)

<3 P<k+1( f )
NN 4

3 3
f P<k+1(f)

is one-to-one, thus

card(—

P<k+l( ) 2k-1
)<card(—)<(card( )J +1.

f sF,<k+l(f)
Corollary 12. For 1<k <, we have:

card(

X P<k+l(x) X 2k-1

—) <card(———*) <[ card(—) +1.
f ERP<k+1(f) ( S}?f J

Proof. Use a similar method described in Lemma 11.

Note 13. For 1<k <¥,, finitt I' (with at least two

elements) nonempty sub-class M of {SSet}U{D, :7 >1}

and nonempty sub-class M’ of {SSet}U{E, :7z>1}, we

have:

e h(UM)cUM iff h;**(UM)c UM,

e M s forwarding (respectively backwarding, stationary)
with respect to hj'”l iff it is forwarding (respectively
backwarding, stationary) with respect to h;,

e hy(UM) cUM' iff h;**(UM") cUM',

e M’ is forwarding (respectively backwarding, stationary)
with respect to h;**™ iff it is forwarding (respectively

backwarding, stationary) with respect to h;.
Proof. Use Theorem 9.
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Abstract: Advance Encryption Standard AES cryptosystem is
one of well-known block cipher that widely used to encrypt the
sensitive data. However, attackers have pointed some drawbacks in
the design of block ciphers, such as: (a) all block ciphers apply a
same key for the encipherment of multiple blocks; (b) if adversary
can discover the key for one block, he can immediately break the
other blocks. Many security attacks have been applied on AES
cipher including linear, differential, distinguishing, correlation and
statistical attacks. The main objectives of this paper are; to develop
a strong and high performance AES algorithm with the utilization
of fuzzy function, to suggest three encryption approaches mixing
AES with fuzzy function, and to analyze the security and evaluate
the efficiency of developed algorithms. The result detects that the
ciphertext acquired is the similar as the plaintext and fuzzy set
theory was suitable for apply as round function in the design of
other block ciphers. Moreover, the security properties,
demonstrated that our designs were highly secure and robust against
possible cryptographic attacks. Finally, the statistical test for
randomness and comparison of the proposed ciphers with identical
ciphers revealed that the proposed algorithms were efficient, and
faster than the conventional block ciphers.

Keywords: Cryptography, AES, Fuzzy set theory, Security attacks,
Statistical tests.

1. Introduction

Designers and attackers are always encoded in a constant
competition to build new attackable codes; therefore, when
broken, the new encryption proposal becomes necessary. For
efficient coding of data, symmetric algorithms are used, in
particular to block zeros through encryption. The researchers
have confirmed the problems of mass zeros. It is said that all
longitudinal zeros, for example, suffer from some typical
weaknesses: (a) all spectral codes use one key to encode
multiple blocks; (b) if the opponent can detect the key for
one block, it can easily break the other blocks; Means that
the opponent is able to collect many blocks encoded by one
key which makes possible more attacks against one block.
Many security attacks have been applied on AES such as
differential, linear, distinguishing, correlation and statistical
attacks.

Block cipher based on fuzzy set theory has become a rich
research area in the field of computer security and
cryptography. In the following, some of the published works
in this area are reviewed.Madanayake, 2012 [1]. Proposed an
algorithm provides security levels by using various keys
based on fuzzy logic for the encryption / decryption process.
Dhenakaran, S.S and.Kavinilavu, N, 2012 [2] Introduced a
new method using a mysterious set theory to integrate text
encryption and convert unclassified text from numerical to
native using fuzzy logic. Hinal, et al.in 2015 [3] presented a

cross-sectional approach based on logic technique using the
secret sharing program (2, 2). Azam, N. A. 2017 [4] A new
image encryption technique is recommended based on
several AES Gray S (RTSs) technologies translated to the
right. Abdullah, K. 2017 [5] Proposed a new RSA encryption
system based on the theory of fuzzy set where the ciphertext
and the plaintext are in terms of Triangular Fuzzy Number
(TEN). In order to bridge the gaps in AES algorithm, and
because of need arises for guarantee the security of the block
cipher cryptosystems while the communication must be
ensured, it is a good idea to developed AES block cipher
algorithm based on fuzzy set theory whereby the plaintext
and the ciphertext are in terms of Triangular Fuzzy Number
(TEN). The rest of the paper as in the following; in section 2,
describe briefly AES algorithm, while some type of fuzzy set
functions was discussion in section 3, in section 4, the
suggested algorithms with some their properties was
illustration, finally, results and discussion, conclusions and
further works in sections 5, 6 and 7 respectively.

2. AES Algorithm

The National Institute of Standards and Technology (NIST)
began the search for an alternative to the Data Encryption
Standard (DES). In 2002 [6] 1997. the Advanced Encryption
Standard (AES) is the new standard, as shown in Figure 1,
developed by Joan Damen and Vincent Regman. It
encrypts/decrypts data in 128-bit clusters using 128-bit (10-
rounds), 192-bit (for 12 rounds) and 256-bit (14-round) key
sizes; each round includes stages different processing
consists of substitution, conversion, mixing of ordinary text
of income, and conversion to the final output of encoded text.
It is more secure than DES and 3DES, moreover, it is general
design, flexible and available worldwide for free [6].

128 {E

roundiys i [
A} r
] ddordy | 4. B
ij rvshiows
Sk e bayies
ey
shitrmes | .
| Frards 4 l
L: - ]
Ky . [ T T
— o — ey
il | = el
L] shifroue
sublryles Py
hfrcwd T |
L] v

Figure 1. Shows AES algorithm [6].
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All operations of AES is applied in GF(2%) and the sixteen
bytes of the 128-bit input block a0,...,a15 being arranged in a
(4 x 4) matrix of bytes as shown in Figure 2.

g | ey | ag |2

iy | ag | ag | o

it | &g | oqn | rpg

iy T |1y |15

Figure 2. Shows the (4 x 4) matrix of bytes for AES

Each round uses four actions, as shown in Figure 3, named
"ShiftRows","SubBytes","MixColumns"and"AddRoundKey"
. The last round has a slightly different shape and deletes the
MixColumns process. The encryption begins with the
AddRoundKey process, and then, the SubBytes process, at
which point each byte is replaced by a byte of a reversible S-
box. In the ShiftRows process, the rows (for bytes) are
converted to a number of byte locations to the left; the first
row is not shifted, the second row is shifted through one
position, the third row to two, and the last row three. The last
process is MixColumns. At this stage, the four bytes in each
column are mixed by the quadrature of the four-byte vector
by a constant, reversible, (4x4)-matrix over GF(2%). The
main characteristic is that if two types of input vectors are
different in bytes s, the output variables differ in at least5 - s
bytes, where 1 < s < 4. Each round closures with
AddRoundKey, where 16 round-key bytes are xor’ed to the
16 information bytes. AES has generally straight forward key
calendar of lengthl6, 24, and 32 bytes, this key was
expanded and returns of 16 x 11, 16 x 13, and 16 x 15 bytes
respectively [7].

Decipherment applied the inverse process of encipherment,
therefore, when we used the same key at encryption then the
plaintext will be receives in decryption.

Figure 3. Shows the four transformations of AES algorithm

3. Fuzzy Sets and

Functions

Fuzzy Membership

Normally, an object has a numeric (degree of membership)
between 0 and 1, 0 membership means the object is not in the
set,1 membership means the object is fully inside the set and
in between means the object is partially in the set. the
description of this fact in mathematic can be represented as,

If Uiis a collection of objects denoted generically by X, then
a fuzzy set 4 in U'is can be defined as a set of ordered pairs:
A={{x,us(x))|x € U}, where U : universe of discourse,
and #a:U = [0,1] characteristic function &, indicating the
belongingness of X to the set 4,

1ifx€A
pal) = {{] ifxeA

called membership. The membership functions that
characterize the blurry groups and the assemblies used are
the basis of fuzzy sets and fuzzy logical systems [8].

Fuzzy logic (FL) is a control system (or logical) of the n-
logic system that uses the "or fact" of the inputs and produces
outputs based on the input states and the rate of change
(instead of the normal "error or error” (1 or 0) , and the logic
of low or high (binary) depends on the basis of the modern
computer, it provides the basis for the approximate thinking
using inaccurate decisions and allows the use of linguistic
variables uses FL as a mathematical tool in areas such as job
optimization, filtration and installation curves, etc. [9].

The Fuzzy Logic application itself to a special system is in
fact not very different from applying logical logic or
probability logic. The FL difference comes from its ability to
create a more general theory of the decision-making process,
called the foggy processor, a special case of approximate
inference. The hazy wizard uses a blurry set and FL theory in
the logical thinking process and acts as a vague logic
algorithm. Ambiguous logic or is made through the
mysterious words that we use so much in our daily lives. For
example, expressions like a little [10].

Fuzzy membership functions can be seen as a bridge between
uncertain data and a blurry world. Organic functions
representing mysterious groups have different forms, which
are determined by certain types of mathematical formulas.
The most common types of functions include trigonometric,
trapezoidal, triangular, bell, sinusoid, Gaussian, Cauchy and
sigmoid. In order to make operations on cloud groups easier,
membership functions are formulated according to their
parameters, which include information about the ambiguity
and scope of the site in the discourse world. Flexibility in
parameter settings makes membership functions also
adjustable. Because of the linearity of its structure, it is
preferable to use organic functions of the triangular type over
others [11].

Some properties of Triangular Membership Functions (TMF)
are briefly examining in the following subsection.

3.1 Triangular Membership Function (TMF)
Triangular membership functions can made of lines, as

[78]
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shown in Figure 4, and realized by the combination of line
equations given in:

0 if x>x,

XXy
— X S XS X,

My () = {2 ®

Xo—X
—=— Xy £X £ X
Xy~ Xy
0 if x = xg
[N 8
i
1
TR
(1) }

K 1 K Ny

Limiverse of disoouarse, A

Figure 4. Shows Triangular fuzzy membership function

Where the parameters x1, x2 and x3 give the location of
fuzzy membership function A in the X universe as shown in
Figure 4. In fact, the parameters x1, x2, and x3 represent the
function of membership A and show us its location in the
opposite universe. It is sufficient to change parameter values
in order to determine a new membership function of a similar
format or to change the location of the speech. This is why
the parameter formulas are important for representing
membership functions. Relation (1) can be used as a
parameterized membership  function that represents
ambiguous subsets of the triangular type. Equation (1) shows
that X2 is a convergence point and equation (2):

Ma) = (Z20k (22 )

can be satisfied as long as x1 < x2 and x < x2.

MA (X::' — ( x3—x ) < (-:c—xl :] (3)

xI—x2 2—x]

Similarly, equation (3) is satisfied as long as x >x2 and x2 <
x3. In other words, the output is equal to the smaller part of
(2) or (3). However, these equations give a negative output if
x < x1 or x > x3. Since the membership scores are set at a
time interval [0,1], negative outputs must be changed to O.
Therefore, the maximum value must be set between 0 and
output from (2) or (3). Accordingly, (1) can be converted to
the figure in (4):

x—xl

M—‘l (.'?C:'] - max (mlﬂ (x!—xl ! ;;3—_:2 )) (4)

Triangular fuzzy subsets are simple to model and very easy
to simulate. The sharp peak can them to react to any changes
even if they are very small. Thus, sharp peak produces

triangle membership functions critical to the changes in the
fragile variable x [12].

4. Fuzzy-AES algorithms

This section provided the mathematical basis of proposed
algorithms, some of the planners used to structure modern
restore block ciphers and modes of procedure. Further, it
represents the design of a new efficient and secure block
cipher called Fuzzy-AES algorithm. Two major parts are
producing by the proposed algorithms: Fuzz set theory and
AES algorithm, which is used to implement the encipherment
and decipherment processes. From this situation, the name
comes Fuzzy-AES. At the beginning of this section, a focus
on investigating the structure of Fuzzy-AES algorithms, types
of Fuzzy-AES algorithms with encryption/decryption
processes. Finally, the significant properties and some
advantages to justify the correctness of the proposed
algorithms are discussing. The methodology for Fuzzy-AES
is demonstrated in Figure 5.

FUZZY - AES
ALGORITHMS

FIRST SECOND
ALGORITHM ALGORITHM

INPUT GENERATE INPUT GENERATE
KEY KEY
ALS
ENGRYPTION fUZZIFICATION

AES ENCRYPTION

GIPHER TEXT

THIRD
ALGORITHM
INPUT GENERATE

COMBINE
FUZZY WITH

EACH
QOPERATION OF
AES

TUZZIFICATION

CIPHER TEXT

[y

GIPHER TEXT

Figure 5. Block diagram of Fuzzy-AES algorithms

As illustration in Figure 5, Fuzzy-AES algorithm consists of
the following parts:

a) First Algorithm: start with AES algorithm then used
Fuzzy function.

b) Second Algorithm: start with Fuzzy function then
used AES algorithm.

¢) Third Algorithm: combine between Fuzzy function
with each operations of AES algorithm.

The inputs of these algorithms are:

1. The key (H ) it is the master keystream of the Fuzzy-
AES  algorithms,  which  generated  from
pseudorandom Number Generator PRNG, applying
Cipher Block Chaining CBC mode of operation. It

consists of 16-bytes (Kosk1, K2, s K15), that is
input into Fuzzy-AES algorithms to generate the
new ciphertext for each round.

2. The plaintext P1, P2,P3,P4, .. it is the message
required to encode. The plaintext £ is comprised by
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16-bytes (Po, D1, - P1s) |

While the output of these algorithms is the Ciphertext (C;),
which was the final output of algorithm, where the ciphertext

consists of C'1,C2, C3,C4, ... with each C comprised of 16-

bytes (€0s€1s s €15) for each round, it is returning to
PRNG for generated a new keystream.

The following subsections deal with various algorithms with
theirs properties.

4.1 Firstalgorithm

In this algorithm, first applied the same procedure
operations of AES algorithm to the input data, then make
fuzzicaition for the output data by employing a Triangular
Fuzzy Membership (TFM) map to produce the ciphertext of
this algorithm, as shown in Figure 6.

INPUT PLAIN
TEXT

PLAIN TEXT

ADD ROUND KEY

INV SUB BYTE

LAST AOUND

INV SHIFT
ROWS

ADD ROUND KEY

INV MiX
COLOUMN

INV SUB BYTE

INV SHIFT
ROWS

SUB BYTE

SHIFT ROWS

MiX COLOUMNS

x Nr-1

AD|

=
5
a <
n n
a8 8
c <
g s
=] =1
= = IOLLAABON
] ] sav
x Nir-1

SUB BYTE
8 ADD ROUND KEY
SHIFT ROWS r
=
n #
q
)
EFUZZIFICATION
CIPHER TEXT
ENCRYPTION DECRYPTION

Figure 6. Encryption/Decryption process of 1% algorithm

4.2 Second algorithm

The second algorithm begin with fuzzication the input by
applying a triangular fuzzy membership map, then applied
the same procedure operation of AES algorithm for the
output to produce the ciphertext of this algorithm as shown in
the Figure 7.

(80]
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=
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QLo
COLOUMN
o
ADD ROUND KEY =
INV SUB BYTE 2
— x
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3
SHIFT ROWS T
ADD ROUND KEY
F
] [ =
4 8
ADD ROUND KEY J » X
i3
=]
I—C|PHER =
ENCRYPTION DECRYPTION

Figure7. Encryption/Decryption process of 2" algorithm

4.3 Third algorithm

In the third algorithm, start with AES algorithm that has
four stages, namely AddRound key, SubByte, ShiftRow and
MixColumn, and for each round, applied these operations as
the following steps:

a) Applied AddRound key stage, which represented the
first operation of AES to the input, then make
fuzzicition to the output of this stage by using a
triangular fuzzy membership map, as describe in
subsection 3.1.

b) Next, the result input to SubByet stage, which
represented the second operation of AES, then make
fuzzicition to the output of this stage by using TFM.

c) After that, the result input to the ShifRow stage,
which represented the third stage of AES, then make
fuzzicition to the output of this stage by using TFM.

d) Finally, the result input to MixColumn stage, which
represented the final stage of AES, then make
fuzzicition to the output of this stage by using TFM.

e) The final output represented the ciphertext of this
algorithm as shown in Figure 8.
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PLAIN TEXT
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Figure7. Encryption/Decryption process of 3" algorithm

4.4 Properties of Fuzzy-AES algorithms

5. Moreover, they can produce a real encoder resulting
from the plain text mixture and the keystream. As a
result, fuzzy set theory PRNG is deploying by the
Fuzzy-AES to generate the keystream, which is
feature by high-level security and performance.

6. Occasionally, a triangular fuzzy membership map as
a function with special properties, working on the
two inputs (i.e., plaintext and keystream), has the
ability to return a copy of the encrypted text to
PRNG, which generates the next keystream.

7. As a result, the PRNG-encoded comment process
results in a greater advantage for Fuzzy-AES than
the three-pointed post function.

8. There is a similarity in design between the proposed
algorithms and other ciphers. Fuzzy-AES is a self-
synchronous block encoding where encrypted text
has an effect on the image key. It has a high level of
safety.

9. Intentional fuzzy-AES algorithms are intending for
use with 16-byte keystream. This Keystream is using
in PRNG to produce a new cyst of up to 64 bytes. In
each round of AES-Fuzzy algorithms, PRNG
generates a 16-byte keystream by combining, using
Nonlinear Invertible Round Function (NLIRF), with
16-byte plaintext to generate 16-byte encrypted text.

5. Results and discussions

This section addresses the major issues regarding Fuzzy-AES
algorithms; it examines the performance of these algorithms
along with possible security attacks and administers the
binary digits randomness tests of the ciphertext bits for these
algorithms. A brief survey of the security analysis for Fuzzy-
AES algorithms is providing in the following subsections.

5.1 Possible Attacks against Fuzzy-AES algorithms

1. Fuzzy-AES algorithm was characterized by its ability

to produce greater security with

proper

implementation and by generating new functions

between the cluster cryptography round and the
fuzzy set theory.

2. In these new designs, a fuzzy set theory was

proposed to produce an effective and long cyst.
Some randomized sequences, which cannot be
distinguished from truly random sequences, can be
used for cryptographic system applications. These

semi-random sequences use a larger number of
alphabets for these purposes to increase the number

of possibilities.

3. The main purpose of designing Fuzzy-AES
algorithms is to use appropriate and effective PRNG
along with the appropriate uniform.

4. Thus, we can realize that Fuzzy-AES algorithms, as

more efficient and powerful algorithms, have an
additional positive effect on plaintext and
keystream. They have the ability to generate a kind
of balance in their structure.

[81]

a) Brute-force Attack: In this type of attack, the
adversary try all possibilities.Since Fuzzy-AES
algorithms applied 128-bit as a keystream, therefore

the attacker needs 2128
approximately equal 34 x10% keys, this mean

that the time required at one encryption per M5 was

approximately equal to 2127 = 1.7 x 10% years
in order to apply a brute force attack against Fuzzy-
AES algorithms [13]. Hence, an exhaustive key
search attack took a long time and it appears
infeasible.

b) Ciphertext Only Attack: The adversary has only a
number of ciphertext messages and tries to
discovery any relationships between the ciphertext
and the data that expose the cipher system till the
ciphertext message is solved. In Fuzzy-AES
algorithms, the plaintext data that input to fuzzy set
theory is randomized and Perform with a keystream
sequence through an exclusive or operation. Then,
the result data can be changed through many
conversion stages of the round function that include
the byte and transformation rows Mixcolumn and
AddRound Key. As a result, the statistical properties
of the plain text message will be removed and the
resulting encrypted text message will result in near-

possible keys, which
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randomization. Thus, the attack appears to be
encrypted text is not possible.

¢) Known Plaintext Attack: The adversary in this type
of attack need the plaintext corresponding the
ciphertext.The plaintext bytes in Fuzzy-AES
algorithms are XOR’ed with the keystream bytes,
the resulting bytes are substitute by employing AES
transformation and fuzzy function. The secret key
that used to update AES transformation and fuzzy
function make the opponent unable to determine the
plaintext byte. Therefore, it was difficult to applied
known plaintext attack.

d) Statistical Attack: tests of statistical are been
performed on Fuzzy-AES algorithms, e.g.
Frequency test, Serial test, Poker test, Runs test and
Auto-correlation test [14]. In the current AES-Fuzzy
algorithms, keystream and ciphertext have been
adopted on the mysterious group theory functions
and the AES algorithm to produce effective
cryptographic text. As a result, to ensure that the
new encrypted text remains strong, the bits of
encoded text in the proposed algorithms have been
tested extensively with the application of statistical
tests of different lengths. The resulting encoded
output passed all statistical tests, including
randomized, binary numbers (see Tables 1, 2, 3, and
4) that justified the generation of encrypted text.

e) Differential Analysis Attack: Differential Analysis
Attack is a generic term for all kind of cryptanalysis
which investigates how differences in the
information input can result in differences in the

output. This attack seems undetectable to apply on
Fuzzy-AES algorithms since the S-box is update by
secret key for each round. Accordingly, the
opponent does not have any information about the
arrangement of S-box.

f) Distinguishing and Correlation Attacks: Two sets
of attacks (i.e. differential and correlational) which
closely resemble each other are discussing in this
part. Any type of cryptanalysis which is applied in
order to distinguish the encoded data from random
data is called by the generic term distinguishing
analysis or attack. Correlation analysis refers to a
class of known plaintext attacks, employing Boolean
function. A weakness in the choice of Fuzzy-AES
algorithm Make encryption functionality susceptible
to link analysis. It is recommended to choose a
logical function that cannot be exploited by
correlation analysis. In general, designers should
exercise caution when applying zeros using the
logical function.

5.2 Basic Five Binary Digits Statistical Tests

Random property and ciphertext bits are analyzed by
applying the five statistical tests named Frequency test, Serial
test, Poker test, Runs test and Auto-correlation test [15]. The
frequency test is for uniformity and the other tests are for
independence. These tests are a fundamental package that is
usually applying for block cipher, stream cipher and
keystream generation [16]. The resulting values of each test
were comparing with the corresponding value of Chi square
distribution. The keystream and ciphertext generated in the
proposed Fuzzy-AES algorithms for different key length

sizes are successfully passed all these tests for every run. A
summary of the results are giving in Tables 1, 2, 3 and 4.

Table 1. Statistical tests for the master keystream of the

Fuzzy-AES algorithms
Tests | 1%alg | 2™ alg | 3 alg | Pass Result
=128bit | =128bit | =128bit | value
Frequency | 0.654 2.793 0.0312 = 3.241 | Pass
Serial test | -26.088 -31.599 0.0118 < 5.591 | Pass
Poker test | -32.000 -8.000 6.761 < 14.067| Pass
Run test | 3.559 3.873 1.882 < 22.362 | Pass
Auto
correlation
Shift1 | -28.751 -3.882 0.266 = 1.9&0 | Pass
Shift2 | -12.644 | -14.462 | 0.178 Pass
Shift3 | -18.814 -9.458 -1.162 Pass
Shift4 | -19.894 | -1.232 1.616 Pass
Shift5 | -18.064 -3.639 -0.631 Pass
Shift6 | -14.910 | -12.631 | -0.543 Pass
Shift7 | -17.667 -1.044 0.272 Pass
Shift 8 | 0.602 -5.595 -1.278 Pass
Shift9 | -8.294 -6.411 -1.191 Pass
Shift 10 | -21.865 | -1.5807 | 1.104 pass

Table 2. Statistical tests for ciphertext of 1** algorithm with
different key lengths

Tests | Key Key Key Pass Result
length | length length value
=128bit | =512bit | =1024 bit
Frequency | 1.3333 0.363 0.568 < 3.841 Pass
Serial test | 4.1273 2.531 4.272 #% 5.991 | Pass
Poker test | -16.000 | -4.000 -64.000 = 14.067 | Pass
Run test | 1.1990 1.022 1.402 = 22.362 | Pass
Auto
correlation = 1.2&0
Shift1 | -0.619 -2.110 -16.879 Pass
Shift2 | -7.818 -20.009 -9.961 Pass
Shift3 | -6.469 -0.311 -11.094 Pass
Shift4 | -7.964 -18.819 -3.934 Pass
Shift5 | 0.583 -0.230 -9.016 Pass
Shift6 | -1.368 -16.111 -17.368 Pass
Shift7 | -0.739 -3.818 -11.918 Pass
Shift8 | -4.231 -14.677 -0.454 Pass
Shift9 | -8.485 -12.274 -14.454 Pass
Shift 10 | -9.200 -11.018 -3.689 Pass
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Table 3. Statistical tests for ciphertext of 2" algorithm with

different key lengths

passed all five statistical tests for every run. A summary of

the results is presenting in Tables 5, 6 and 7.

Table 5. Statistical tests compression of 1%, 2" and 3"

Tests | Key Key Key Pass Result algorithms for key length 128-bit
length Length length value Tests | 1% alg 2" alg 3" alg Pass Result
=128bit | =512bit | =1024 bit =128bit | =128bit | =128bit | value
Frequency | 0.278 0.187 0.000 < 3.841 Pass Frequency | 1.333 2793 2531 = 3.841 Pass
Serial test | 3.424 2.969 1.900 = 5.991 Pass Serial test | 4.127 -31.599 3994 < 5.001 | Pass
Poker test | -2.000 -4.000 -16.000 < 14.067 | Pass
- Poker test | -16.000 -8.000 -42.000 = 14,067 | Pass
Run test | 1.287 1.235 1.020 % 22.362 | Pass
Run test | 1.199 3.873 0.033 = 22,32 | Pass
Auto
. Auto
correlation
correlation
Shift 1 | -13.947 -6.585 -6.092 = 1.9&0 Pass = 1.960
. Shift1 | -0.619 -3.882 -1.546 Pass
Shift2 | -3.863 -5.810 -1.772 Pass
. Shift2 | -7.818 -14.462 -5.031 Pass
Shift3 | 1.734 -0.309 -7.363 Pass
. Shift3 | -6.469 -9.458 -4.451 Pass
Shift4 | -3.863 -4.193 -0.889 Pass
. Shift4 | -7.964 -1.232 -3.863 Pass
Shift5 | -15.758 -8.547 0.000 Pass
. Shift5 | 0.583 -3.639 0.000 Pass
Shift6 | -7.191 -9.293 -1.285 Pass
. Shift6 | -1.368 -12.631 -.122 Pass
Shift7 | -4.483 -8.040 0.315 Pass
. Shift 7 | -0.739 -1.044 -7.672 Pass
Shift8 | -4.134 -4.209 -4.055 Pass
. Shift8 | -4.231 -5.595 -6.841 Pass
Shift9 | -2.629 -1.728 -4.647 Pass
. Shift9 | -8.485 -6.411 -1.100 Pass
Shift 10 | -5.973 -2.611 -2.607 Pass
Shift 10 | -9.200 -1.5807 -2.525 pass
Table 4. Statistical tests for ciphertext of 3" algorithm with
different key lengths Table 6. Statistical tests compression of 1%, 2" and 3"
Tests | Key Key Key Pass Result algorithms for key length 512-bits
length Length length value
g g g Tests | 1% alg 2 alg | 39 alg | Pass Result
=128hit =512 bit | =1024 bit . . .
=512bit =512bit | =512bit value
Frequency 1.531 2.000 3.781 = 3.841 | Pass
Frequency | 0.363 2.793 0.187 = 3,841 | Pass
Serial test 1.767 2.244 4.809 = 5,991 | Pass .
Serial test | 2.531 -31.599 | 2.969 = 5,991 | Pass
Poker test -2.000 -4.000 -15.500 = 14.087 | Pass
Poker test | -4.000 -8.000 -4.000 = 14.0/7 | Pass
Run test 0.602 -0.253 0.887 = 22,362 | Pass Run test | 1.022 3.873 1.235 = 22,362 | Pass
Auto
Auto .
correlation = 1.960
correlation =1, -
= 1560 Shift1 | -2.110 -3.882 -6.585 Pass
Shift1 | -1.400 | -3.400 -1.069 Pass .
Shift2 | -20.009 -14.462 | -5.810 Pass
Shift 2 -2.155 -1.708 -6.075 Pass .
Shift3 | -0.311 -9.458 -0.309 Pass
Shift3 | -1.448 | -0.545 -7.379 Pass .
Shift4 | -18.819 -1.232 -4.193 Pass
Shift 4 -1.454 -2.412 -5.488 Pass .
Shift5 | -0.230 -3.639 -8.547 Pass
Shift5 | -4.989 | -2.233 -6.974 Pass .
Shift6 | -16.111 -12.631 | -9.293 Pass
Shift 6 -3.713 -4.314 -2.435 Pass .
Shift 7 | -3.818 -1.044 -8.040 Pass
Shift7 | -2.008 | -6.708 -0.736 Pass .
Shift8 | -14.677 -5.595 -4.209 Pass
Shift 8 -5.031 -0.360 -4.800 Pass .
Shift9 | -12.274 -6.411 -1.728 Pass
Shift9 | -6.037 | -4.663 -2.967 Pass )
Shift 10 | -11.018 -1.5807 | -2.611 pass
Shift 10 0.381 -7.293 -4.800 Pass

Moreover, the statistical tests compression for 1%, 2" and
3" algorithms for different key length sizes are successfully

[83]



SECOND INTERNATIONAL CONFERENCE FOR APPLIED AND PURE MATHEMATICS

Table 7. Statistical tests compression of 1%, 2" and 3™
algorithms for key length 1024-bits

Tests | 1% alg 2" alg | 3 alg | Pass Result
=1024bit | =1024 =1024 value
Frequency | 0.568 0.000 3.781 = 3,841 | Pass
Serial test | 4.272 1.900 4.809 = 5,001 | Pass
Poker test | -64.000 -16.000 -15.500 | = 14,067 | Pass
Run test | 1.402 1.020 0.887 = 22,362 | Pass
Auto
correlation = 1,960
Shift1 | -16.879 -6.092 -1.069 Pass
Shift2 | -9.961 -1.772 -6.075 Pass
Shift3 | -11.094 -7.363 -7.379 Pass
Shift4 | -3.934 -0.889 -5.489 Pass
Shift5 | -9.016 0.000 -6.974 Pass
Shift6 | -17.368 -1.285 -2.435 Pass
Shift7 | -11.918 0.315 -0.736 Pass
Shift 8 | -0.454 -4.055 -4.800 Pass
Shift9 | -14.454 -4.647 -2.967 Pass
Shift 10 | -3.689 -2.607 -4.880 pass

Finally, the comparison for 1%, 2" and,3" algorithms with
identical cipher algorithms such as AES, DES and 3DES has
been done . A summary of the results is available in Table 8.

Table 8. Compression between 1%, 2" and 3" algorithms
and ldentical Algorithms [17]

6. Conclusions

The current paper attempt to discuss the possibilities of
developing a new block cipher algorithms of more efficiency
(pass the statistical tests for randomness) and security (resists
against security attacks) than other block ciphers. In this
paper, the mechanism used to develop the weak classical
concept of the AES algorithm worked to form a stronger and
more suitable coding. A little later, this paper attempted to
introduce new block encryption algorithms called Fuzzy-
AES. Thorough tests have been done by describing these
algorithms, evaluating their performance and security
properties, and examining their implementation aspects. The
analysis of the devised algorithms demonstrated that the
proposed algorithms are characterized by flexibility; speed,;
sufficient; and highly secured than similar block ciphers such
as DES, 3DES and AES. In the future, NIST tests can be
used to show a promising building block for cryptographic
systems with certain advantages over ambiguous set theorems
and fuzzy logic. With a new blur mechanism by applying an
additional type of organic functions such as Gaussian,
Cauchy and Bell
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Abstract

In this study , we suppose that T is a commutative ring with
identity and X is a unitary module on T. A proper submodule
W of a module X over aring T is called visible if for every
nonzero ideal I of T, implies W = IW where this concept is
up ( to our knowledge ). Here the behavior of the above
concept has been studied within the class of multiplication
modules. Some of the distinctive results has been submitted
also,the trace of visible submodule has been presented where
it was symbolized by Tr(W). Two important descriptions
for the trace of visible submodule of multiplication module
have been given , also we have demonstrated when the
visible submodule of multiplication are torsionless , add to
that many properties of Tr (W) have been reviewed.

Keywords

Visible submodule , divisible module , multiplication module
, cancellation module , torsionless module , flat module.

Introduction :

T stands for commutative ring with identity and X for the
unitary module over T. In [1], Buthyna N. Shihab and
Mahmood S. Fiadh submitted a concept of visible submodule
which is defined as a proper submodule W of a module X
overaring T, so that it achieves W = IW for every nonzero
ideal I of T. Many of the properties which characterize this
concept have been built add to a lot of important results and
features have been submitted in [1]. Also, Buthyna N.
Shihab and Mahmood S. Fiadh are given in [2] the concept
of fully visible module where the module X on T is called
fully visible if each submodules of it is visible. The
properties and characteristics of this concept have also been
reviewed in addition to other results. The aim of this article
is to look for the behavior and effectiveness of the visible
submodules within the class of multiplication modules.
Where many properties have been proved and other
important outcomes have been incorporated that adopt the
same relationship. In addition to this , the trace of visible
submodule has been provided. Two descriptions for the trace
of visible submodule which are encoded by Tr (W) have
been mentioned. Finally we discussed the conditions under
which the trace of visible submodule of multiplication

module is torsionless. In our article we will need a number of
basic concepts that we will include here.

o An T-module X is called multiplication if YIW < X
(W submodule of ) , 3 ideal I of Tsuch that W = IX [3].
. Let K, W be two T-submodules of X. Then the

residual of K by W is the set of all s € T such that sW E K
and dented by (K: W). The annihilator of X is written as
(0: X) and dented by ann(X) , if anny(X) is equal to zero
, then X is said to be faithful [4].

o A submodule W of an T-module X is named
multiplication submodule of X & W N K = (W: K)K for
every submodule K of X [5].

. An idempotent submodule W of a module X over T
is defined as : W is an idempotent & W = (W: X)W [6].

. An T-module X is called cancellation module if

IX = JX for any two ideals I and J of , implies I = J [7].

o An T-module X is called fully cancellation module

if for each ideal I of T and for each submodules N; , N, of X
such that IN; = IN, implies N; = N, [8].

. An T-module X is flat if for each injective
homomorphism f: N’ — N from one T-module to another ,
the homomorphism Iy ®+f: X®tN' — X®N is injective ,
where Iy is the identity isomorphism of X [6].

. An T-module X is called divisible if and only if

rX =X foreach0#r eT [9]

1.Visible submodule of multiplication module

A proper submodule W of an T- module X is said to be
visible , if W = IW for every nonzero ideal I of T. In this
part , the behavior of visible submodule was studied in the
class of multiplication module where a distinction was given
to the submodule because we proved that W < X is visible if
and only if (W:X) is visible ideal of T when X is
multiplication faithful finitely generated module. Many

properties and useful results have introduced.

Under the class of multiplication and cancellation module ,

we have the following characterization.
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Proposition(1.1):

Let X be a multiplication cancellation T-moduel. Then every
proper submoduel N of X is visible submoduel if and only if
(N:X) is visible ideal of T.

Proof:

&) Suppose that (N: X) is visible ideal of X. Let x € N.
Then (x) E N and hence ((x)7 X) E (NiX).

Therefore ((x)7 X) E (Nt X) = I(N: X).
hence ((x)7 X)X E I(N+X)X which implies that (x) E IN

(since X is multiplication module). Therefore x € IN , and
hence E IN , also it is clear that IN = N. Thus from two
above inclusions , we have N = IN , that is N is visible

submodule.

=) Let N be a visible submodule , to prove that (N: X) is
visible ideal. Let x € (N;X). Then (x)X = N, implies
(x)X £ IN (since N is visible submodule). Then (x)X =

I(N:X)X. But X is cancellation module. Therefore (x) &
I(N:X) and hence (x) € I(N: X).

Then (N: X) £ I(N: X).

Conversely I(N: X) = (N: X). Therefore (N: X) = I(N: X).
This end the proof.

From proposition (1.1) , we obtain the following corollaries.

Corollary(1.2):

Let N be a proper submodule of a finitely generated faithful
multiplication T-module X.Then N is visible if and only if
(N:X) is visible ideal of T.

Proof:

Since X is a finitely generated faithful multiplication module
, then by ([10], proposition (3-1) , p.52) , we get X is

cancellation and by proposition (1.1) we obtain the result.

We can introduce another proof for corollary (1.2) which not
depend on proposition (1.1). But at first let us know the

following:

Aring T (not necessary commutative ) is called (Van
Neumann) regular if VYt € T ,3a € T such that tat =t , the
purity property has been circulated to the modules by D.
Field house [11] , a module X over T is called regular if
each submodule W of X is pure in X , that is the inclusion

0 — W — X remains exact upon tensoring by any T-

module .

Several definition about regular modules were discussed by
Ware , Zelamanowitz , and Ramamurthi and Rangaswamy.
Anderson and fuller in [9] named the submodule W a pure if
JW =W nJX for every ideal J of T.

Anther Proof of corollary (1.2):

Let N be a visible submodule of X . Then N = IN for every

nonzero ideal Iof T

But N is pure submodule by ([1] , proposition(2.14)) ,
therefore N n IX = IN for every ideal I of T. Then N = N n
IX and hence ((N N IX):X) = (N:X) which implies
(N:X)n (IX:X) = (N:X) [12]. Also from [6] , we get
(NtX) is pure ideal of T. Therefore (N7.X) (IX7X) = (N: X).
Thus (N: X)I = (N:X) by [10], then I(N: X) = (N: X).
Thus (N:X) is visible ideal of T.

Conversely :

Suppose that (N: X) is visible ideal of T, then (N: X) =
I(N: X) for every nonzero ideal Iof T. From ( [1],
proposition (2.14)) we obtain (N: X) is pure ideal of T. Then
INn(N:X) = (N:X).

which implies (IX: X) n (N: X) = (N: X).
And hence ((IX N N):X) = (N: X) .

But X is multiplication module , then ((IX N N): X)X =
(N: X)X which implies IX n N = N , then we get from [6] ,

N is pure , implies IN = N. Thus N is visible submodule

Corollary (1.3):
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Let T be an integral domain and X be a faithful cyclic T-
module Then N is a visible submodule of X if and only if
(N:X) is visible ideal of T.

Proof:

It is known that every cyclic module is multiplication , also
every multiplication faithful module over integral domain is
finitely generated , by ([10] , proposition (3-3) , p.54) and
also by ([10], proposition (3-1) , p.52)) , we have X is
cancellation module and by proposition (1.1) , we get the

result.

A visible proper ideal J of T is defined as /| = AJ for each
nonzero ideal A of T [1]. Now we have the following

properties.

Proposition(1.4):

Let X be a finitely generated faithful multiplication T-
module and I be a proper ideal of T. Then the following are
hold:

(1) I is visible ideal of T < IX is visible submodule of X.
(2) If N is visible submodule of , then annt(N) =
annt(N: X).

Proof:

(1). =) Let I be a visible ideal of T. Then JI = I for every

nonzero ideal J of T and hence JIX = IX. Therefore IX is

visible submodule.

&) suppose that 1X is a visible submodule of X then

JIX = 1X forall proper ideal J of T ('since X is finitely
generated faithful multiplication module , then we obtain X
is cancellation module by [10] ). Therefore JI = I and hence

[ is visible ideal of T.
(2). Letx € ann(N: X). Then x(N: X) = 0.
Which implies N = x(N: X)N = 0, therefore x € ann(N).

Now , let N be a visible submodule of X. Then N = IN for
every nonzero ideal I of T and by ([1], proposition (2.14)) ,

we have N is pure , from this fact , we write N = N n IX for

every ideal I of T. But N is visible , therefore IN = N n IX.
Taking I = annt(N) and hence ann(N)N = N nann(N) .

0 = N n ann(N)X.

This leads us (0: X) = (N n ann(N)X: X)
= (N:X) n ann(N)X:X)
= (N:X) n (IX: X)
=(N:X)Nn 1
= (N:X) N ann(N)

= (N: X)ann(N) by ([1] proposition
(1.1) and proposition (2.14)).

Then ann(X) = (N: X)ann(N).
But X is faithful which implies that 0 = (N: X)ann(N).
Therefore ann(N) E ann(N: X). Which complets the proof.

The following proposition introduce the necessary conditions

for a visible submodule to be multiplication.

Proposition (1.5)

A visible submodule B of a finitely generated faithful

multiplication T-module X is multiplication
Proof:

Let A be any submodule of X. Then A = (4: X)X (since X is
multiplication module) , we have B is visible submodule of
X , then we get B = IB for every a nonzero ideal I of T.
Hence BN AE B =IB = (A: B)B (choose I = (A: B).
Therefore BN A E (A: B)B ...(1).

Now , it is clear that (A: B)B E X ,then (4:X)(A:B)B E
(4: X)X = A.

Which implies that ((4: X)(4: B)B) N B = A n B. Hence
(A:B)(A: X)B = A n B. Now because B is visible
submodule of X , then for every nonzero ideal I of T, we
have B = IB taking I = (4:X) , then

(A:X)B = B and in the last we get (A: B)B E AN B...(2).

From(1) and (2) then we obtain An B = (A: B)B , thatis B

is multiplication submodule of X.
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The next theorem provide equivalent statements for the

visible submodules under certain conditions.

Theorem(1.6):

Suppose X is faithful finitely generated multiplication

module over T ,D is proper submodule of X. So all will be

equivalent;

1) D is visible submodule of X.

2) D is multiplication and is idempotent in X.

3) D is multiplication and K = (D: X)K for each
submodule K of D.

4) D is multiplication and (K: D)D = (K: X)D for
each submodule K of X.

5) Td = (D: X)d foreach d € D.

6) T = (D:X) + ann(d) foreachd € D.

Proof:

(1) = (2) From proposition (1.5) and ( [1] ,proposition
(2.18)) .

(2) = (3) Let D be a proper submodule of X then by (1) , D
is multiplication submodule. For each submodule K of D, D
is multiplication then K = (K: D)D.

Also X is multiplication so we will get K = (K: D)(D: X)X.
But D is visible submodule , then by corollary (1.2) (D: X) is
visible ideal. Therefore (K: D)(D: X) = (D: X) and hence

K = (D: X)X.

This leads to
(K:X)K = (K: X\)(D: X)X = (D: X)(K: X)X = (D: X)K

(since X is multiplication , K < X).
K is visible because N is visible.
By ([1], proposition (2.18)) , we have K = (D: X)K.

Permission (2) = (3) check.

(3) = (4) From (3) , we obtain directily D is multiplication.

Also , we have D is visible submodule , then D = ID for

every nonzero ideal I of T (Taking I = (K: X).

Therefore D = (K:X)D , also we can chose I another ideal
of T, that is we can write = (K: D) , then (K:D)D =D =
(K: X)D.

Therefore (K:D)D = (K: X)D.

(4) = (5) Since D is multiplication , then for every d € D

, We have Td = (D: X)d.

(5) = (6) by (5) , we have , foreach d € D 3x € (D: X)
3 d = xd. Therefore D = (x)D and hence (x) = T (since D
is cancellation module as a result we get it from the fact that

X is faithful FG and multiplication module).

Hence (D: X) = T which implies T + anng(d) = (D: X) +
annp(d) and hence T = (D: X) + anny(d). Therefore (6)
holds.

(6) = (1) by (6) ,weget TD = (D:X)D + anny(d)D for
eachd € D.

Therefore D = (D: X)D.

X is multiplication module , then D = X for some ideal I of
T. Which implies D = (IX: X)D (since X is cancellation ).

Therefore D = ID and hence D is visible submodule of X.

Let us review the following properties.

Proposition (1.7):

Assume X is finitely generated faithful multiplication T-
module and K is visible submodule of , then Ny¢; Jx K =
(Nker Ju)K , for every a nonempty collection J, (k € I) of

visible ideal of T.
Proof:

K is visible submodule of X , then by corollary (1.2)), we
have (K: X) is visible ideal of T. Suppose that J,, (k € I) is
any collection of visible ideals of T. Now , (Ny¢ /i) K =
K = (K:X)K by ([1] , proposition (2.18)) , which is equal

(K:X)(Nier JiDK = (Nker Ji) (K X)K =
(Nger ) (K: X)AX for some ideal A of T. (since X is

multiplication module)

we want to show that (Nye; Ji K: X) = NgerJi (KiX)
obviously , Nye;Ji (K1X) E (NgerJi K: X). Conversely let ,
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Y € (Nker S K: X). Then yX E NierJi K = Niger Jie (K2 X))
but we have X is finitely generated multiplication module ,
then X is cancellation by [10]. Therefore y € Ny Jik (K: X).

Now , (NkerJi) (K: X)AX = (Ner Ji K: X)AX
= A(Nker Sk K: X)X =
A(NkerJi K)

But J, is visible ideal for all k € I, then by ([1],
corollary(2.9)) we get Ny /i 1S visible ideal , also by
proposition ( 1.4) we obtain that Ny¢; /i K is visible , that is
A(Nger I K) = Nier Ik K then (NierJi K) = NierJi K and
hence (Nker JiDK = NierJi K.

Proposition(1.8):

Let X be a multiplication cancellation module over T , and K
be a visible submodule of X. Then for each nonzero proper
ideal E of T, result from this E(K;X) = (EKX).

Proof:

K is visible submodule , then K = EK for each nonzero
proper ideal E of T, implies (K;X) = (EK:X) , also by
propositon (1.1), we get (K1X) is visible ideal of T.

Therefore E(K:X) = (K1X) and hence E (K+X) = (EK;iX).

After giving above we can demonstrate proof of proposition

(1.1) depending on proposition (1.8).
Proof:

=) N is visible submodule of X , then for each a nonzero
ideal I of T, we write N = IN , therefore (N: X) = (IN: X)
and by proposition (1.8) , we obtain (N: X) = I(N: X). Thus

we get the result.

) if (N: X) visible then for each nonzero ideal I of T .
We have (N: X) = I(N: X)

And by proposition (1.8) , we obtain (N: X) = (IN: X).

Therefore (N: X)X = (IN: X)X and hence N = IN. Thus N

is visible submodule.

Proposition (1.9):

Let X be a finitely generated faithful multiplication T-mduel
and K be a visible submodule of X. Then (K: X) is the

intersection of all visible ideals I of T.
Proof:

Let A be a collection of visible ideals I of T. K is visible
submodule of X , then K = JK for every ideal 0 = J of T,
and hence K = IK where I € A , therefore N,;c, 1 is visible
ideal by ([1], corollary (2.9)) ,thislead us K = N;c4 [ K =
(Nyeq DK by proposition (1.7).

It follows that (K: X) = ((N;ea DK:X) = (Nea D(K: X)
but K is visible , then by proposition (1.1) , (K: X) is visible
and hence by ( [1] , proposition (2.14)) , (K: X) is pure,
therefore

(K:X) = (NeaD) N (K:X) and hence (K: X) = N;ea! , but
K is visible , and hence an idempotent. Therefore K =
(K: X)K.

It flows that (K: X) € A. So (K: X) = N;eal , therefore is

the smallest element of A. This ends the proof.

Let’s take the next result that shows that each submodule of
fully cancellation module be a visible under condition that T

is regular ring.

Proposition (1.10):

A proper submodule K of fully cancellation module X over a
regular ring T will be visible.

Proof:

T is regular ring , then for every ideal G of T is pure, this
leads us to G2 = G (since every pure ideal is idempotent).
Let K be a proper submodule of X then G2K = GK , which
implies that GGK = GK note GK , K are two distinct
submodules of X and X is fully cancellation , this gives

GK = K. Therefore K is visible.

Here , we will demonstrate the following results to reach to

our important proposition.

Proposition(1.11):
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Let T be a PIR and let X be a divisible T -module. Then each

proper pure submodule of X is visible.
Proof:

Let I be a nonzero ideal of T and N be a proper pure
submodule of X. Since T is PIR , then I = (r) for some r € T

,r#0.

We must prove that N = IN. Itisclearly that IN € N, to
prove the another inclusion (thatis N € IN) letn € N. Then
n € N n X. But X is divisible , then X = rX forallr € T,
r # 0. Therefore n € N n rX which implies that n € rN

(since N is pure submodule).

Therefore n € rN and hence n € IN , next we obtain
N € IN.

Proposition(1.12):

Let X ba a divisible module over a PIR and H be a proper

submodule of X. Then the following hold:

(1). If M/H is flat , then H is visible submodule and the

converse hold when X is a flat T-module.

(2). If H is a visible submodule of a flat module , then H is
flat.

Proof:

(1). From proposition (1.11) and ([13] proposition
(2.3),p.20). we get the result of number (1).

(2). From proposition (1.11) and( [13], proposition (3.3),
p.22). we get the submodule H is flat.

Proposition(1.13):

Let X be a divisible module over a PIR and H be a proper
submodule of X. If X is a multiplication faithful T-module ,

then H is flat.
Proof:

Since X is multiplication faithful T-module Then X /His also
multiplication faithful T-module Then by [14] we obtain that
X/H is flat T-module and by the first side of (1) of

proposition (1.12) , we get H is visible submodule , and by
(2) of proposition (1.12) , we obtain H is flat (since X is
multiplication faithful T-module) , then X is flat by [14].

2.Trace of visible submodules

The trace of visible submodule of X over T has been
studied here and symbolizes it by Tr(W) and the set
{o(w):0 € Hom(W,T) ,w € W}, is a set of generator for
Tr(W).

Two important descriptions for the trace of visible
submodule of multiplication module have been given , also
has been proven when the visible submodules of
multiplication modules are torsionless. Where a module
Xover T is named torsionless , if X can be embedded in
direct product of copies of T [15] , add to that many
properties of Tr (W) have been presented.

Proposition (2.1):

If N is a visible submodule of a finitely generated faithful
multiplication T-module , then (N: X) = Tr(N) =

Yaen ann(ann(a)).
Proof:

Suppose that N is visible submodule of , then for each
nonzero ideal I of T, we have N = IN. Taking I = (N;X),
then N = (N:X)X. Therefore V6 € Hom(N,T),0(N) =
O((NZX)N) = (NFX)O(N).

Therefore Yg O(N) = (N:X) Y9 0(N) and hence Tr(N) =
(N:X)Tr(N) , but X is finitely generated faithful
multiplication and a submodule N of X is pure by ([1] ,
proposition (2,14)) , then (N: X) is pure ideal of T , that is

Tr(N) = (N: X)Tr(N)
= (N:X) N Tr(N)
= (N:X) N (Tr(N)X: X)
= ((N N Tr(N)X: X)
= (Tr(N)N: X)

= (N:X) (since N is visible ).
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Therefore Tr(N) = (N: X).
Suppose now that a € N and 8 € Hom(N, T).

Clearly ann(a) E ann(8(a)). Therefore ann(a)8(a) = 0

and hence 6(a) € ann(ann(a)).

Which implies T6(a) = ann(ann(a) and 8(N) =
Laen TO(a) Laen ann(ann(a)).

Therefore Tr(N) E ann(ann(a)) and hence (N:X) E

ann(ann(a)).
Another side , leta € N.
Then by (theorem (1,6), (6)) we get T = (N: X) + ann(a).

Therefore T ann(ann(a)) = (N: X)ann(ann(a)) +
ann(ann(a))ann(a) And hence ann(ann(a)) =

(N: X)ann(ann(a).

which implies that ann(ann(a) = Tr(N)ann(ann(a) E
Tr(N) = (N: X). Thus ann(ann(a) & Tr(N). Then we get
Tr(N) = Y4ey ann(ann(a)). This lead us to write Tr(N) =
(N:X) = ¥qen ann(ann(a)).

Next we review the most important application for

proposition (2.1).

Corollary (2.2):

If X is faithful finitely generated multiplication generated
module on T and W is visible submodule of , then Tr(D) =
(DiX ) = anny(annt(D)).

Proof:

By proposition (2.1) , we achieved the first equality and
represented by Tr(D) = (D;X ). The rest is to prove that
(D;iX ) = annr(anng(D)).

For ease we will write Ann(D) = annt(annt(D)). We
want to prove that Ann(D = (D1X ). As D is visible
submodule of , then from theorem (2.1) , we have T =
(DiX ) + ann(N).

Therefore Ann(D) = (DiX )Ann(D) and hence Ann(D) <
(D;X ). Now, let y € (D;X ). Then yX < D which implies

y ann(N)X = 0. Therefore y ann(D) € ann(X) =0
(since X is faithful ).

Thus (DiX ) € Ann(D) so that Ann(D) = (D;X )This

gives the end of the proof.

Corollary (2.3):

Suppose X is finitely generated faithful multiplication T-

module and N is visible submodule of , then

(1) N=Tr(N)N.

(2) ann(N) = ann(Tr(N)).

Proof:

(1) According to proposition (2.1) , we get Tr(N) = (N: X) ,
then Tr(N)N = (N:X)N. But every visible module is an

idempotent by ([1] , proposition (2.18)). Therefore
Tr(N)N = N.

(2) Suppose r € anny(N) , then rN = 0 implies 0;(rN) =
0 and hence )i, 8;(rN) = 0 this gives Tr(N) = 0, so that
r € annp(Tr(N) and annt(N) E annp(Tr(N) .

Let r € ann(Tr(N)).

Then by proposition (2.1) we obtain that r € ann(N: X) ,
and by proposition (1.4), we obtain r € annt(N). This

gives the other direction of containment. Thus (2) holds.

Low and smith in [16] Demonstrated that for a multiplication
faithful module X if feHom(X,T) ,n kerf = 0then X is

torsionless.

Corollary (2.4):

Let X be a finitely generated faithful multiplication module
over T and D be a visible submodule of X. Then D is

torsionless .
Proof:

Suppose that H =Ngepomep,) Kero . Then from
proposition (1,5) , D is multiplication , therefore H =
(H:D)D , follow from this

0=0(H)=(H:D)o(D) forallc € Hom(D,T) .
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Implies that 0 = (H: D)Tr (D).

Therefore by proposition (2.1) and corollary (2.3) obtain
that (H:D) £ anny(Tr(D) = annt([D: X]) =
anny(D).

Finally H = (H: D)D = 0. That is the answer.

The coming result of the item offers important properties for

the trace of visible module.

Corollary (2.5):

Let X be a faithful finitely generated multiplication module
over T and D is visible submodule of X. Let D = H®L for

two submodules H and L of X. Then

1) Tr(D) = Tr(H)®Tr(L).
2) D =Tr(H)D®Tr(L)D.
Proof:

(2).Since D is visible submodule of X , then H , L are also
visible submodules by ( [1], proposition (2.7)) and by
proposition (2.1) , we obtain

Tr(D) = (D:X) ,Tr(H) = (H: X) , Tr(L) = (L: X).
Therefore by [17] and , ([13], proposition (4)) we obtain
Tr(D) = (H+L:X) = (H: X) + (L: X) = Tr(H) + Tr(L).
Since X is faithful , then

0=0X)=HnNLX)=H:X)NnL:X)=Tr(H)n
Tr(L).

Hence Tr(D) = Tr(H)®Tr(L).
(2). From corollary (2.3), we have

D =Tr(D)D and by (1) ,we getD = Tr(H)D + Tr(L)D ,
also by ([1] , proposition (2.13)) , we have

Tr(H)D N Tr(L)D = (Tr(H) nTr(L))D = 0.

Thus D = Tr(H)D®Tr(L)D.

Proposition (2.6):

Let X be a finitely generated faithful multiplication over T,
N is visible submodule of X. Then Tr(N) is pure ideal of T.

Proof:

We own N is visible submodule , then for each nonzero ideal
Aof T, N = AN. Thus we take 6;(N) = 6;(AN).

Therefore X7, 6; (N) = X7, 0, (AN) =
AY7,0; (N)andhence Tr(N) = ATr(N).

?:1 Ab; (N) =

Now to prove that Tr(N) is pure ideal.

Case (1): ANTr(N) ETr(N) = ATr(N) as well as the

second case verified and this means A Tr(N) £ A n Tr(N).

Therefore A Tr(N) = A n Tr(N). That invites us to say that
Tr(N) is pure ideal.
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Abstract: Let R be an associative ring with identity and let M be a left R- module. As a generalization of essential submodules Zhou defined
an F- essential submodules provided it has a nonzero intersection with any nonzero submodule in F where F is a collection of R- modules
such that if M €T, then M' € F for any module M' isomorphic to M. In this article we study p*- essential submodules as a dual of p-small
submodules provided it has a nonzero intersection with any nonzero singular submodule of M. Also we define and investigate p*-extending

modules with some examples and basic properties.

Keywords. p*-essential, p*-closed submodules, u*-extending modules.

1. Introduction

Let R be an associative ring with unity and let M be
unitary left R- module. A submodule A of M is said to be
essential in M, (denoted by A<, M), if for any submodule B
of M, AN B =0 implies B = 0 [1], and a submodule A of M
is said to be closed in M if A has no proper essential
extension in M; that is if A<, B <M, then A = B [1]. An R-
module M is called extending (or CS- module) , if every
submodule of M is essential in a direct summand of M. It is
well known that an R- module M is extending if and only if
every closed submodule of M is a direct summand [2]. A
submodule A of M is called p- small submodule of M

M
(denoted by A<<, M) if whenever M = A + X, 7 is
cosingular , then M = X, see [3]

Following [4], Zhou defined an F- essential submodules
provided it has a nonzero intersection with any nonzero
submodule in F where F is a collection of R- modules such
that if MeF , then M' € F for any module M' isomorphic to
M. In this paper we introduce p*- essential submodules as a
dual of p-small submodules provided it has a nonzero
intersection with any nonzero singular submodule of M.

An R- module M is called p*- extending module if every
submodule of M is pu*- essential in a direct summand.

In section two , we define and study pu*-essential
submodules , p*- closed submodules and p*- uniform
modules.

In section three , we introduce p*- extending modules with
some examples and basic properties , we give sufficient
conditions for a submodules of pu*- extending modules to be
u*- extending module.

In section four , we give various characterizations of p*-
extending modules and study the direct sum of p*- extending
modules.

2. Mu*-essential and p*- closed submodules.

In this section, we introduce p*- essential submodules and
p*- uniform modules as a generalization of essential
submodules and uniform modules respectively which are
duals of p- small submodules and p- hollow modules. Also ,
we define a p*- closed submodules which is stronger than
closed submodules. We study the basic properties of them
that are relevant to our work.

Definition (2.1): Let A be a submodule of an R- module M,
M is said to be p*-essential extension to A or A is a p*-
essential in M if for any nonzero singular submodule B of M

, We have A B Z 0. It will be denoted by A<, M.

Remarks and Examples (2.2).

(1) 1t is clear that pu*- essential submodules are
generalizations of essential submodules. There is a p*-
essential submodule of an R- module M which is not
essential in M. For example: Consider Zg as Zg- module

. Since Zg is nonsingular Zg- module , then {6 , é} and

{0,2,4} are p*- essential in Zg which are not
essential in Zg.

Every nonzero submodule of Q as Z- module is p*-
essential in Q.

Every nonzero cyclic submodule of Z as Z- module is
p*- essential in Z.

Consider Z4 as Z- module , {(_) ,é} and {(_) E ,4_1} are
not p*- essential in Zg.

()
3)

(4)
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In the following propositions we consider conditions
under which p*-essential submodules versus essential
submodules.

Proposition(2.3): Let M be a singular R- module and let A be
a submodule of M , then A<~ M if and only if A<, M.

Proof: It is clear.

Let R be a commutative integral domain and M be an R-
module. Recall that T(M) = {meM: rm = 0, for some
nonzero r € R} is called the torsion submodule of M. If T(M)
= M (if T(M) = 0), then M is called torsion (torsion free)
module, see [5].

Proposition (2.4): Let M be a torsion module over a
commutative integral domain R and A be a submodule of M.
Then A<~ M if and only if A<, M.

Proof: Itis clear by [5, P. 31] and Prop. (2.3).

Let M be an R-module . Recall that M is called a prime
R- module if ann(x) = ann(y), for every nonzero elements x
andyin M, see [6].

Proposition (2.5): Let M be a prime R- module with Z(M) #
0 and A be a submodule of M. Then A<« M if and only if
A<, M.

Proof: Assume that A<~ M. To show that M is singular .

Let 0 # xe Z(M), then ann(x) <. R and let 0 # y € M. Since
M is prime module , then ann(x) = ann(y) and hence ye
Z(M). Thus Z(M) = M and hence A<, M, by Prop. (2.3). The
proof of the converse is clear. O

Next, we give characterizations of p*- essential
submodules.

Proposition (2.6): Let M be an R- module and let A be a
submodule of M , then A<, M if and only if for any

nonzero cyclic singular submodule K of M, AN K# 0.

Proof: Let K be a nonzero cyclic singular submodule of M
and let 0 # x e K. By our assumption 0 # <x> N A< ANK.
Hence A M K # 0. The proof of the converse is clear. [

Proposition (2.7): Let M be an R- module and let A be a
submodule of M , then A<, M if and only if for any
nonzero element x in M with Rx singular has a nonzero
multiple in A.

Proof: Let 0 7 x € M with Rx singular submodule of M. By
Prop. (2.6) RxM A # 0. Hence there is r € R such that 0 #
rx € A. The proof of the converse is clear. O

Proposition (2.8): Let M be any R- module. Then the
following are hold.

(1) Let submodules A< B< M. Then A<+ M if and only if
A< e B and B< e M.

(2) Let Ai<;= B1< Mand A< B, < M, then Ay M A,
<we B1MB,.

(3) Iff: M;—>Mj, is an R- homomorphism and A< M, ,
then f ™ (A) <ywe M;.

4) Let {AJaeA be an

submodules of M and A<~ B,, V& €A, then ®

QAEN

independent family of

A @B,
OEN
Proof. (1) Suppose that A<, M and let L be a nonzero

singular submodule of B. Since A<, M, then AN L # 0.
Hence A<, B. Now let K be a nonzero singular submodule

of M, then 0 # AN K<BM K. Thus B<x M.

Conversely , assume that A<, B< ,~ M and let L be a
nonzero singular submodule of M , then BN L is a nonzero
singular submodule of B. But A</« B, therefore AMB ML

= A~ L7 0. Thus we get the result.

(2) Assume that A;<,~ B1< M and A;<;xe B, <M and let L
be a nonzero singular submodule of B; ~ B, < B;. Since

A<y~ Bi, then A;L# 0 and hence it is a nonzero
singular submodule of B,. But A<+ B, , therefore A; N A,

M LF#0. Thus A1NMA, Sp*e B; M B,.

(3) Let f : My —> M, be an R- homomorphism and let A<,

M,. To show that f™* (A) <, My , let 0 Z x € M, with Rx is
singular submodule of M, then f (Rx) is a singular
submodule of M,. Consider the following two cases.

(a) if xe £ (A), we are done.

(b) if x€ £ (A),0Ff(x) € M, . Since A<, M, , then
there is r€R such that 0% r f (x)e A, hence 0 % rxe ™
(A). Thus ™ (A) < M.

(4) We use the induction on the number of elements of A.
Suppose that the family has only two elements. i.e. , {A; ,
A,} is independent family in M, Aj<;x B; and A<, B,.
Let n; : By®B,—B; and n; : B;®B,—B, be the
projection maps. Since A;<,x B1 and A,<,x B, , then m;”
(A1) = A1@® B <y B1® B, and 1} (A2) = B1 @ Ay <
B.@® B, by(3) and hence A, DA, = (A;@®B,) " (B, ®

Az) <% B1@® B, , by (2).

Now, assume that the result is true for the case when the
index set with n-1 elements. Now let {Aj,A,,.....,A } be an
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independent family and assume that Ai<« Bj , Yi=1,
n-1

2,....,n. By the previous case we have @Aifu”eéBi and
i=1

i=1
An<y# Bn , hence we get éAiSp*eéBi- Finally, let {A,}
i=1 i=1
O € A be an independent family of submodules of M and
A< By, Vo € A. Let N be a nonzero singular submodule

of @B, and let x be a nonzero element in N. So x =

QaEN

bi+by+....+b, , where bieB,, Y i=12,...n Hence NM

(At Ap+....+ A,) Z 0 which implies that N @ A, #

QEN

® A< @B,
aEN

QaeN

0. Thus
O

Notes. (1) Note that {B,}a < in proposition (2.8-4) need
not be an independent family. Example: Let M be the Z-

module Z® Z, and let A;=0D Z, ,B,=2D Z,,A, =B, =
yAS) (_J One can easily show that A;<;«B; and A,<«B;

and A; N A, = {0} but B, B, =Z@® 0. Hence {B;,B,} is
not independent family.

(2) Let A4, A,, By and B, be submodules of an R- module M.
If Ai<;=B1 and A,<.~B, , then it is not necessary that
(A1+A;) <, (B1+B;) as the following example shows:

Consider the Z- module Z@® Z,. Let A; = A, = Z(§ ,6) and
B, = 2(1,0) , B, = Z(1,1). One can easily show that
A1<%eB1 and A,<,»B,. But (A1+B;) is not pu*-essential in
(B1+B,) , where there exists a nonzero singular submodule K

={03}® Z, of (B,+B,) such that (A,+A,) N K={(0,0)}.

Recall that a submodule A of an R- module M is called
a closed submodule of M if A has no proper essential
extension. See [1].

Now, we define the p*- closed submodules and introduce
the basic properties of these submodules.

Definition (2.9): Let A be a submodule of an R- module M,
we say that A is p*-closed in M (briefly A<~ M) if A has no
proper p*- essential extension in M.

The following proposition ensure the existences of p*-
closed submodules.

Proposition (2.10): Let M be an R- module . Then every
submodule is p*- essential in p*- closed submodule of M.

Proof: Let A be a submodule of M. Consider the collection I
={K: K < M: A<~ K}. It is clear that I" is nonemplty set .

Let {C,} & € A be a chain in T. To show that A<y« U C,,

aEN

let 07 xe |J C, with Rx is singular submodule of |J C,,

aen aen

then there is a0 € A such that 0 # xe C,0 .But A<, C,,
Vo € A, therefore there exists reR such that 0 % rxeA ,
hence A<~ U C, which means that J C, €T. By Zorn's

OEN OEN
lemma I has a maximal element say H. To show that H is
p*- closed in M , let B be a submodule of M such that H<
B, then A<+ H<,~ B and hence A<, B, by Prop. (2.8) .
But H is element in I Thus H = B.
O

maximal

Remarks and Examples (2.11).

(1) Every p*- closed submodule of an R- module M is
closed in M. The converse is not true in general. For

example , Consider Zg as Zs- module {6,1_’)} and {6,
2 ,4_1} are closed in Zg but not u*- closed in Zg.

(2) Consider Zg as Z- module , {6 ,Z_’:} and {6 ,5 ,é_l} are
p*-closed submodules of Zg.

(3) InZ4asZ-module,{0,2} isnot u*- closed in Z,.

(4) Let M be asingular R- module. Then A is closed in M if
and only if A is p*- closed in M.

(5) Let M be a torsion module over a commutative integral
domain R and A be a submodule of M. Then A< .. M if
and only if A<, M.

(6) Let M be a prime R- module with Z(M) # 0 and A be a
submodule of M. Then A<~ M if and only if A<; M.

(7) 1t is well known that every direct summand of an R-
module M is closed in M. But in case p*-closed there is
no relationship with direct summands. For example , Zg
as Zg- module , the nontrivial direct summands of Zg

are {0,3}and {0,2, 4} which are not p*- closed in
Ze.

(8) If a submodule A of an R- module M is pu*- closed and
p*- essential in M, then A = M.

(9) The intersection of p*- closed submodules of M need
not be p*- closed in M. For example , consider M = Z

@7, as Z- module , let A=2® 0 , B = Z(1,1). Since
0@ Z, is the only singular submodule of M and has
zero intersection with A , then A <.~ M. Similarly B

<o M, but AnB =22@® 0 which is not p*- closed
in M.

Next, we give the basic properties of p*-closed
submodules.
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Proposition (2.12): Let M be an R- module. If A<« M, then
B

=<

A

, Whenever B<;., M with A <B.

e

Proof. Suppose that A < B <~ M and let %be a singular

submodule of Msuch that L M E: A,thenLNB =
A A A

A. Since B<;«. M , then A <~ L, by Prop. (2.8-2). But A is
M o

p*- closed in M, therefore A = L. Thus %Swe

Proposition (2.13): Let f : M—> M' be an epimorphism and
let A be a submodule of M such that Kerf < A. If A is p*-
closed in M, then f (A) is u*- closed in M.

Proof. Let K' be a submodule of M' such that f (A) <.~ K',
then f (f (A)) <y f * (K') , by Prop. (2.8). One can easily
show that f *(f (A)) =A, hence A <, f * (K'). But A is p*-
closed in M , therefore A = f * (K') , and hence f (A) = K.
Thus f (A) is p*- closed in M. O

One can easily prove the following corollaries.

Corollary (2.14): p*- closed submodule is closed under
isomorphism.

Corollary (2.15): Let A and B be submodules of an R-

module M with A<B. If B is p*- closed in M, then %is J*-

closed in M .
A

Proposition (2.16): Let M be an R- module and let A , B be
submodules of M with A< B < M. If A'is u*- closed in M,
then A is u*- closed in B.

Proof: Suppose that A<, L <B <M. But A is u*- closed in
M, therefore A = L. Thus A is u*- closed in B. O

It is easy to prove the following corollary.

Corollary (2.17): Let A and B be submodules of an R-
module M if AM B is u*- closed in M , then AN B is pu*-
closed in A and B.

We cannot prove the transitive property for u*- closed
submodules. However under certain condition we can prove
this property as we see in the following result.

Recall that an R- module M is called chained module if
for each submodules A and B of M either A<BorB <A, see

[7].

Proposition (2.18): Let M be chained R- module and let A
and B be submodules of M suchthat A<B <M. If A<»c B <
we M, then A< e M.

Proof. Let K be a submodule of M such that A<, K <M. By
our assumption we have two cases: If K < B. Since A is p*-
closed in B, then A = K, hence A< ,«c M. If B <K, since
A< K, 50 B <j»e K, by Prop. (2.8). But B < ¢ M,
therefore B = K, hence A<+, B. But A <,». B, therefore A =
B = K Thus A is u* closed in M.
O

The following proposition shows that the direct sum of
p*-closed submodules is again u*- closed .

Proposition (2.19): Let My, M, be two R- modules. If A;<,ix
Ml and Azfp*c Mz , then A1 @ Azfu*c M1 (‘B Mz.

Proof: Assume that A; @ A,< B, ® B, , B; <M; and B,
<M, leti;: M;—> M; @M, and i M;—> M; © M, be
the inclusion maps. Since A; @ A,<,-. B; @ B, , then i (A,
@ Az)<,w i17(B1 @ B,). Note that i;*(A; @ Ay) = {xeM;:
1) e (A1 DAY} = xeMi: x0) e (A DA} = Ar<p
i17(B1 @ B,) = By. Similarly , A;<,+ B,. But A;<,<c M, and
A<y« My , therefore A; = By and A; = B,. Thus A; @
Ar< M; @ M.

O

An R- module M is called uniform module if every
nonzero submodule of M is essential in M , see [1].

Now , we introduce p*- uniform modules as a
generalization of uniform modules which is a dual of p-
hollow modules.

Definition (2.20): An R- module M is called p*- uniform if
every nonzero submodule of M is pu*- essential in M.

Remarks and Examples (2.21):

(1) Every nonsingular module is p*- uniform. The
converse is not true in general , for example , Z, as Z-
module.

(2) Every torsion free module over a commutative integral
domain is p*- uniform.

(3) Clearly that every uniform module is p*- uniform ,
hence Q as Z- module and Z- as Z- module are p*-
uniform modules.

(4) The converse of (3) is not true in general. For example ,
Zg as Zg- module.

(5) Zg as Z- module is not p*- module.

(6) Let M be a singular R- module. Then M is uniform if
and only if M is p*- uniform.
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(7) Let M be a torsion module over a commutative integral
domain R. Then M is uniform if and only if M is p*-
uniform.

(8) Let M be a prime R- module with Z(M) #= 0. Then M is
uniform if and only if M is pu*- uniform.

The following theorem gives a characterization of p*-
uniform modules. Compare with [3, theorem (3.7)].

Proposition (2.22): Let M be an R- module. Then M is p*-
uniform if and only if every nonzero singular submodule of
M is essential in M.

Proof: (=) Assume that M is p*- uniform and let A be a
nonzero singular submodule of M. Assume that there exists a
nonzero submodule B of M such that Am B = 0. Since M is
p*- uniform , then B <, M and we have A is nonzero
singular submodule of M , then AN B # 0, which is a
contradiction.

(<=) To show that M is pu*- uniform , let A be a nonzero
submodule of M and assume that A is not pu*- essential in M,
that is there exists a nonzero singular submodule B of M such
that AmB = 0. By our assumption B<, M , then A = 0,
which is a contradiction.

O
Compare the following Prop. with [3, Prop. (3.8)]

Proposition (2.23): A nonzero monomorphic image of p*-
uniform is p*- uniform.

Proof: Let f :M — M' be an R- monomorphism and assume
that M is p*- uniform , we have to show that M' is pu*-

uniform , let A be a nonzero submodule of M', then f (A) # 0
, if f (A) = 0, then A< Kerf = 0 which is a contradiction.
Since M' is p*- uniform , then f (A) <.~ M'and hence A<
M. |

Corollary (2.24): A submodule of p*- uniform is again p*-
uniform.

Note. A quotient of pu*- uniform need not be p*- uniform.

For example , Z as Z- module is p*- uniform but é =Z;
which is not pu*- uniform.

The following proposition gives a condition under which
a quotient of pu*- uniform is p*- uniform.

Proposition (2.25): Let M be a pu*- uniform and let A be a
u*- closed submodule of M, the

n M is u*- uniform.
A

Proof: Let %be a nonzero submodule of % , hence L is

nonzero submodule of M. But M is p*- uniform , therefore L

M
iby
A

<we M. Since A is p*- closed in M , then %SH”E
M . .
Prop. (2.12). Thus T is u*- uniform. [

A direct sum of p*- uniform modules need not be p*-

uniform. For example , let M = Z;@ Z, as Z- module,
clearly that Zg and Z, are p*- uniform Z- modules but M is
not p*- uniform , where there exists a singular submodule A

= <(6 ,i)> which is not essential in M since there is B = <(

5,6)> suchthat ANB =0.

Now , we give certain conditions under which a direct sum
of p*- uniform modules is p*- uniform.

Let M be an R- module. Recall that a submodule A of M is
called a fully invariant if g(A) < A, for every g € End(M)
and M is called duo module if every submodule of M is fully
invariant. See [8].

Proposition (2.26): Let M = M; © M, be a duo module. If
M, and M, are p*- uniform modules , then M is p*- uniform.

Provided that A M; 0, Vi=12.

Proof: Let A be a nonzero submodule of M. Since M is duo
module , then A is fully invariant and hence A = (AN M;)
@ ( AN M,). Since each of (AN M;) and (AN M) is a
nonzero submodule of M; and M, respectively , it follows
that (AN M1)< jxe My and (A M3)< ixe M2, Then A< e
M , by Prop. (2.8).
O

Recall that an R- module M is called distributive if for all
A,Band C<M,AN(B+C) = (AN B)+(AM C). See [9].

In similar argument one can easily prove the following
proposition.

Proposition (2.27): Let M = M; @ M, be a distributive
module. If M; and M, are p*- uniform modules , then M is
p*- uniform. Provided that ANM; Z0, Vi=1,2.

3. p*-Extending modules.

In this section , we introduce the concept of pu*- extending
modules as a generalization of extending modules. We
generalize some properties of extending modules to p*-
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extending modules and discuss when the submodule of p*-
extending module is p*- extending module.

Definition (3.1): An R- module M is called p*- extending

module if every submodule of M is p*- essential in a direct

summand. Clearly that every p*- uniform module is p*-

extending. The converse is not true in general. For example ,

Zg as Z- module.

Remarks and Examples (3.2).

(1) Every extending module is p*- extending , hence Z as
Z- module is u*- extending. The converse is not true in
general . For example , let R = Z[x] be a polynomial
ring of integers Z and let M = Z[x] ©® Z[x]. Since M is
nonsingular , then it is p*- uniform and hence it is p*-
extending , but M is not extending , by [2, P.109].

(2) Let M be a singular R- module. Then M is p*-
extending if and only if M is extending.

(3) Let M be a torsion module over a commutative integral
domain. Then M is pu*- extending if and only if M is
extending.

(4) Let M be a prime R- module with Z(M) # 0. Then M is
u*- extending if and only if M is extending.

(5) For any prime number p , the Z- module M = Z,® Z,
is u*- extending.

(6) For any prime number p , the Z- module M = Z, @ Zy3
is not pu*- extending.

The following proposition gives a condition under which
the p*- extending module and p*- uniform module are
equivalent.

Proposition (3.3): Let M be an indecomposable module.
Then the following statements are equivalent.

(1) M is p*- uniform.

(2) M is p*- extending.

(3) Every cyclic submodule of M is pu*- essential in a direct
summand of M.

Proof: (1) = (2) = (3) It is clear.

(3)= (1) Assume that every cyclic submodule of M is p*-
essential in a direct summand of M and let A be a nonzero
submodule of M , let x€ A, hence Rx is pu*- essential in a
direct summand D of M. But M is indecomposable, therefore
D = M. Since Rx < A< M, then A <;=e M. Thus M is p*-
uniform. O

Now , we give various conditions under which a
submodule of a u*- extending module is p*- extending.

Proposition (3.4): Let M be a p*- extending R- module and
let A be a submodule of M such that the intersection of A
with any direct summand of M is a direct summand of A,
then A is a u*- extending module.

Proof: Let X < A <M. Since M is p*- extending , then there
exists a direct summand D of M such that X<, D. By our
assumption AN D is a direct summand of A. Hence X = (X
M A< (AM D), by Prop. (2.8). Thus A is p*- extending.

O

Let M be an R- module. Recall that a submodule A of M is
called a fully invariant if g(A) < A, for every g € End(M)
and M is called duo module if every submodule of M is fully
invariant. See [8].

Proposition (3.5): Every fully invariant submodule of p*-
extending module is p*- extending.

Proof. Let M be a pu*- extending module and let A be a fully
invariant submodule of M. Let X be a submodule of A. Since
M is pu*- extending , then there exists a direct summand D of

M such that X <« D. Let M = D@ D', where D' < M. Now
consider the projection map p: M —— D ,then (1-p): M
——D". Claim that A=(ANp (M) D ((I-p)(M ) NA).
To show that , let x& A, then x=a+b ,a€D and beD".
Now P(x) =p(a+b) =a and (1-p)(x) = b. But A is fully
invariant , therefore p(x) = a€ p(M)M A and (1-p)(x) = b
€ (I-p)(M)NA. Thus A=(AN p(M)) D ((I-p)(M) N A) =
(AN D) @ (AN D). Since X<=D, then X=(X M A) <, (A

M D).Thus A is p*-extending , by Prop.(2.8).
O

Corollary (3.6): Let M be a duo p*- extending module , then
every submodule of M is u*- extending.

The next proposition gives another condition under which
the submodule of u*- extending module is a p*- extending.

Recall that an R- module M is called distributive if for all
A,Band C<M,AN(B+C) = (AN B)+(AM C). See [9].

Proposition (3.7): Let M be a distributive u*- extending R-
module, then every submodule of M is pu*- extending.

Proof: Let A be a submodule of M and let X be a
submodule of A. Since M is pu*- extending , then there
exists a direct summand D of M such that X<« D, let M=D
@ D', where D'<sM. But M is distributive, therefore A=(A

ND)®D (AND, then (AND) is a direct summand of
A and X< (AMD). Thus A is p*-extending.
O

Let M be an R- module. Recall that a proper submodule A
of M is called a maximal submodule if whenever ACB<M,
then B = M. Equivalently , A is maximal submodule if M =

Rx+A, VxgA, see [10].
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Proposition (3.8): Let M be a p*- extending module which
contains maximal submodules. Then for any maximal

submodule A of M, either A <»c M or M = AD®B , for
some simple submodule B of M.

Proof: Let A be a maximal submodule of M and suppose that
A is not p*- essential submodule of M , then there is a
nonzero singular submodule B of M such that AMB =0, let
Xx€B and x & A. Since A is maximal submodule of M , then

. M
M=A+Rx<A+B,hence M=ADB. SinceB= — ,s0B

A
is simple. O
A module M is called local module if it has a largest
submodule , i.e, a proper submodule which contains all other
proper submodules. For a local module M, Rad(M) , the
Jacobson radical of M is small in M , see [11].

Corollary (3.9): Let M be a local u*- extending module ,
then Rad(M)< e M.

Proof: Since M is local module , then Rad(M)<<M , hence
Rad(M) can not be a direct summand of M. Thus Rad(M)<
M, by Prop. (3.8). O

4. Characterizations of p*-extending modules.

In this section , we give various characterizations of p*-
extending modules. Also, we give some conditions under
which the direct sum of p*- extending modules is p*-
extending module.

Theorem (4.1): Let M be an R- module. Then M is p*-
extending module if and only if every p*- closed submodule
of M is a direct summand.

Proof: (=) Suppose that M is p*- extending and let A be a
u*- closed in M, then there is a direct summand D of M such
that A<,~ D. But A is u*- closed in M , therefore A = D.

(<) To show that M is p*- extending , let A be a
submodule of M , then there is a p*- closed submodule B of
M such that A<« B, by Prop. (2.10). By our assumption , B
is a direct summand of M. Thus M is pu*- extending module.

O

Theorem (4.2): Let M be an R- module. Then the following
statements are equivalent.

(1) M is p*- extending module.

(2) For every submodule A of M, there is a decomposition
M=D@ D', such that A<D and D'+A <= M.

(3) For every submodule A of M, there is a decomposition

M = 2 ® ﬁsuch that D is a direct summand of M
A A A
and K< = M.

Proof: (1)=(2) Let M be a p*- extending and let A be a
submodule of M, there is a direct summand D of M such that
A< D, then M=D@D', D' < M. Since {A, D'} is an
independent family , then A+D' <«. M, by Prop. (2.8).

(2)=>(3) Let A be a submodule of M. By (2) , there is a
decomposition M = D@ D', such that A < D and D'+A <,

M. Claim that M_D ® D+A
A A

.SinceM =D®D',

M _D+D'_ D D+A D D+A_
then —= = = and — N =
A A A A
Dn(D'+A) _A+(Dn D'):A hence M _D ®
A A A
D'+A

. Take K = D'+A , so we get the result.

(3)=(1) To show that M is p*- extending , let A be a

submodule of M. By (3) , there is a decomposition %=

% S %such that D is a direct summand of M and K<«

M. It is enough to show that A <, D. Let i :D—> M be the
injection map. Since K<, M, then i * (K) <, i * (M) , that
is DM K<« D. One can easily showthat DK =A,so M
is u*- extending module. O

Proposition (4.3): Let M be an R- module. Then M is p*-
extending module if and only if for each p*- closed
submodule A of M, there is a complement B of A in M such

that every homomorphism f : A@ B—>M can be lifted to a
homomorphism g : M — M.

Proof: This is a direct consequence of [12 , Lemma 2]. (I

Proposition (4.4): Let M be an R- module. Then M is p*-
extending module if and only if for every submodule A of M
, there exists an idempotent f € End (M) such that A <« f
(M).

Proof: Clear.

The following proposition gives another characterization
of u*- extending module.

Proposition (4.5): Let M be an R- module , then M is p*-
extending module if and only if for each direct summand A
of the injective hull E(M) of M , there exists a direct
summand D of M such that (A ™ M)<,= D.

Proof: Let A be a submodule of M and let B be a
complement of A , then A@B <. M ,by [1, Prop. (1.3)].
Since M<, E(M) , then A@ B <, E(M). Thus E(A) ® E(B) =
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E(A@® B) = E(M). By our assumption , there exists a direct
summand D of M such that E(A) "M <« D. But A <. E(A)
, therefore A M< e E(A) "M < D, hence A <» D.
Thus M is pu*- extending. The proof of the converse is clear.
O

The following proposition shows that the direct summand
of p*- extending module is p*- extending.

Proposition (4.6): A direct summand of p*- extending
module is u*- extending.

Proof: Let M = A@® B be a p*- extending module. To show
that A is a u*- extending , let X be a pu*- closed submodule of

A, then X@ B is a p*- closed submodule of M , by Prop.
(2.19). Hence X @® B is a direct summand of M , then M = X

@BADY,Y<M, thatis X is a direct summand of M. But X
< A, therefore X is a direct summand of A. Thus A is p*-
extending module. O

The following proposition gives a condition under which
a quotient of pu*- extending module is a p*- extending.

Proposition (4.7): Let M be a p*- extending module and let

A be a p*- closed submodule of M , then %is p*-

extending module.
Proof: Let M be a p*- extending module and let A be a p*-
closed submodule of M , then A is a direct summand of M ,

M
let M =A@ A", for some submodule A' of M, hence K =

A" is a p*- extending module , by Prop. (3.6).
O
Corollary (4.8): Assume that f : M—>M' is an R-

homomorphism and let Kerf be a p*- closed submodule of M
, then f (M) is p*- extending.
Proof: Let f : M—>M' be an R- homomorphism and let Kerf

be a u*- closed submodule of M , then

=f (M) is p*-
Kerf
extending module. O
The direct sum of pu*- extending modules need not be pu*-

extending , for example , let M = Z; @ Z, as Z- module,
clearly that Zg and Z, are p*- extending Z- module but M is
not p*- extending.

Now , we give sufficient conditions under which the
direct sum of p*-extending modules is a p*-extending.

Proposition (4.9): Let M=M; @© M, be a distributive
module if M; and M, are p*-extending , then M is p*-
extending.

Proof: Let M = M, @ M, be a distributive module , M, and
M, are p*-extending and let A < M. Since M is distributive,
then A= ANM= ANM; D M,) = (ANM)D (AN
M,). Since M; , M, are p*-extending , then there exists a
direct summand D; of M; and direct summand D, of M,
such that (AM M;) < Dy and (AN M;) <= D,. Hence A
= (ANM;) D (AN My)) <, (D1® D) and D; P D is
a direct summand of M , by Prop. (2.8). Thus M is p*-

extending. O

Proposition (4.10): Let M :i®l M; be an R-module ,where
€

M; is a submodule of M,V i€ Il. If M; is p*-extending , for
each i€l and every pu*- closed submodule of M is fully
invariant , then M is p*-extending.

Proof: Let A be a p*- closed submodule of M and 77 ; :M
—> M; be the natural projection on M; , for each i € I. Let

X eA,thenx=Z Xi, 1€, X, €M; ' 7T i (X) = x;. By our
assumption, A is fully invariant and hence 77 ; (A)<S AN M; .

So, 7T ; (X)=x; € AN M; and hence x € IC;DI (AMM;). Thus

Asi®| (AN M;). Buti(-DI (AN M;) < A, therefore A:i(-Dl
€ € €

(ANM) , Vi€l Since ANM; <M; and M; is p*-
extending , then there exists direct summands D; of M;

such that (AM M;) < = D; . By Prop. (2.8) A:(i@l (AN
(S

M;)) < e (iajl D;) , for each i€ 1. Thus M is p*-extending.

O
Proposition (4.11) Let M; and M, be pu*-extending modules
such that annM;+ annM,= R, then M; @ M, is p*-
extending.
Proof: Let A be a submodule of M;@® M,. Since

annM;+annM,=R, then by the same way of the proof of [13

,Prop.4.2,CH.1] A=B & C, where B is a submodule of M,
and C is a submodule of M,. Since M; and M, are p*-
extending , then there exists direct summands D; of M; and
D, of M, such that B< j» D; and C< . D , hence A =(B
®C) < . (D1@® D) , by Prop. (2.8). Thus M is p*-

extending. O

Proposition (4.12): Let M = M; @ M, be an R- module with
M; being p*- extending and M, is semisimple. Suppose that
for any submodule A of M with A M; is a direct summand
of A. Then M is p*- extending.

Proof: Let A be a submodule of M. Then it is easy to see that

A+M; = M, @ [(A+M,) N\ M,]. Since M, is semisimple ,
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then (A+M) M M, is a direct summand of M, and therefore
A+M, is a direct summand of M. By our assumption A = (A
M M,)@® A", for some submodule A' of M. Since M, is p*-
extending , then there is a direct summand D of M, such that

ANM; < D. Hence A = (ANM;) DA<, DDA

Since D@ A<@A+M;<@ M, then DDA’ is a direct
summand of M. Thus M is p*- extending.
O

Proposition (4.13): Let M = M; @ M, with M, being p*-
extending and M, injective. Suppose that for any submodule
A of M, we have AM M, is a direct summand of A, then M
is u*- extending.

Proof: Let A be a submodule of M. By hypothesis , there is a
submodule A’ of A such that A = (A M,) @ A'. Note that A’

M, +A
M M, =0 and hence —_—

= M, is an injective module

, so there is a submodule M' of M such that %:

M, +A M
ZT@T Thus it is easy to see that M = M, ® M’

M

and that M'= M_ =M,. Since M, is u*- extending , then
2

M' is p*- extending , there is a direct summand K of M' such

that M = K@ K' and A" < K. Since ANM; is a
submodule of M, and M, is an injective module , then there
is a direct summand D of M, such that AN M, <~ D.

Hence A= [(ANM,) DA< DOK, where DO K is a
direct summand of M. Thus M is p*- extending.
O

Proposition (4.14): Let M = M; @ M, such that M, is p*-
extending and M, is injective module. Then M is u*-
extending module if and only if for every submodule A of M
such that AM M, # 0 , there is a direct summand D of M
such that A<« D.

Proof: Suppose that for every submodule A of M such that A
MM, #0 , there is a direct summand D of M such that
A< D. Let A be a submodule of M such that AM M, = 0.
M, +A

= M, is an injective module , there is a

Since

submodule M' of M containing A such that %=

M (M, +A)

A . It is easy to see that M = M'@® M,

M
Since M'= —— =M, is u*- extending , so there is a direct
2

summand K of M', hence K is a direct summand of M , such
that A<,~ K. Thus M is p*- extending. The proof of the
converse is obvious. O

Proposition (4.15): Let R be a PID , then the following
statements are equivalent;

1- C-ID R is u*-extending, for every index set I.

2- Every projective R- module is p*-extending.

Proof: (1)= (2) Let M be a projective R- module , then by
[10, Corollary (4.4.4), p.89] ,there exists a free R- module F

and an epimorphism f : F—— M. Since F is free, then F =

@ R, for some index set I. Now consider the following short
exact sequence:

/

O0— Kerf—» SR>\ —0
Where i is the inclusion map . Since M is projective ,

then the sequence splits .Thus €|‘> R=Kerf & M. Since GI'D

R is p*-extending , then M is p*- extending , by Prop. (4.6).
(2)= (1) Clear. (I

By the same argument ,we can prove the following:

Proposition(4.16): Let R be a PID , then the following
statements are equivalent;

1- @ R is p*-extending, for every finite index set I.

2- Every finitely generated projective R- module is p*-
extending.
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Abstract. Let M be a unitary R-module and R be a commutative
ring with identity and let X be a fuzzy module of an R-module M.
Our aim in this paper to study the concepts semi T-ABSO fuzzy
submodules and semi T-ABSO fuzzy modulesas generalizations of
T-ABSO fuzzy submodules and T-ABSO fuzzy modules. Many
new basic properties, characterizations and relationships between
semi T-ABSO fuzzy submodules(modules) and other concepts are
given.

Keywords. T-ABSO fuzzy submodule, T-ABSO fuzzy module, semi
T-ABSO fuzzy ideal, semi T-ABSO fuzzy submodule, semi T-
ABSO fuzzy module, quasi-prime fuzzy submodule, semiprime
fuzzy submodule.

1. Introduction

Zahedi [17], in1992 presented the concept of a fuzzy ideal A
fuzzy subset K of aring R is called a fuzzy ideal of R, if Vx,y €
R: K(x-y) > min{K(x), K(y)} and K(xy) > max{K(x),K(y)}".
Mukhrjee [13], in 1989 intoduced the concept of prime fuzzy ideal
" A fuzzy ideal H of a ring R is called a prime fuzzy ideal if H is a
non-empty and for all ag, b; fuzzy singletons of R such that
asb; € H implies that either a;, € H or b, € A, vs,| € [0,1]".Deniz
et al [3], in 2017 presented the concept of 2-absorbing fuzzy ideal
which is a generalization of prime fuzzy ideal. Darani and
Soheilnia [2], in 2011 introduced the concept of 2-absorbing
submodule "a proper submodule N of M is called 2-absorbing
submodule of M if whenever a, b € R, me M and abm €N , then
am €N or bm €N or ab €(N:xM)". Hatam and wafaa [7], in 2018
expanded this concept " Let X be fuzzy module of an R-module
M. A proper fuzzy submodule A of X is called T-ABSO fuzzy
submodule if whenever ag,b, be fuzzy singletons of R, and
X, €X,Vs,l,ve[0,1] such that a;h;x, S A then either asb; <
(A:xX) or asx, €A or bx, € A" Abdulrahman [1], in 2015
presented the definition of 2-absorbing module™ An R-module M is
called a 2-absorbing module if zero (0) submodule of M is 2-
absorbing submodule " equivalently " if whenever a, b € R, me M
and abm =0 , then am =0 or bm =0 or ab € annM". Hadi [4], in
2004 presented the concept of semiprime fuzzy submodules "Let A
be a fuzzy submodule of a fuzzy module X of an R-module M such
that A# X, A is called semiprime fuzzy submodule if for each fuzzy
singletone 7, of R, x, SX, r?x, €A implies rx, S A4 "
Maysoun [11], in 2012 introduced the concept of semiprime fuzzy
module "Let X be a fuzzy module of an R-module M, X is called
semiprime fuzzy module if for each non-empty fuzzy submodule A
of X, F-annA is a semiprime fuzzy ideal of R".Hatam [6], in 2001
introduced the concept of quasi-prime fuzzy submodule™ A fuzzy

submodule A of a fuzzy module X of an R-module M is called a
quasi-prime fuzzy submodule of X if whenever a;b;x, € A for
fuzzy singletons a,, b, of R and x, € X, Vs,l,v € L, implies that
ax, €A or  bx, S A".Also Abdulrahman [1], in 2015 is
circulated the concepts of 2-absorbing submodules and 2-absorbing
modules to semi-2-absorbing submodules and semi-2-absorbing
modules.
This paper be composed of two sections

In section (1) we present and study the concept of semi T-ABSO
fuzzy submodule as a generalization of T-ABSO fuzzy submodule
and we give many properties, characterizations and relationships
between semi T-ABSO fuzzy and other concepts.
Futhermore we debate the direct sum of semi T-ABSO fuzzy
submodules. In section(2) we present the concept of semi T-ABSO
fuzzy modules , so many properties and characterizations are given
. Also we debate the direct sum of semi T-ABSO fuzzy modules.
Note that we denote to fuzzy: F., module: M., submodule: subm. ,
[0,1]: L, otheroiwse: 0.w.

2. Semi T-ABSO F. Subm.

In this section we present the concepts of semi-T-ABSO F.
ideal and semi T-ABSO F. subm. Also introduced and study some
properties and relations of semi-T F. subm. with other concepts of
F. subm.

Frist we give the proposition specificates of T-ABSO F.
subm. in terms of its level subm. is given:

"Proposition 2.1. Let A be T-ABSO F. subm. of F. M. X of
an R- M. M iff the level subm. 4, is T-ABSO subm. of X, for
allvel,[7]".

Now, we present the concepts of a semi T-ABSO F. ideal.and
semi T-ABSO F. subm. as follows:

Definition 2.2. A proper F. ideal H of a ring R is called a semi T-
ABSO F. ideal if for F.singletons ag,b, of R such that a?b, € H ,
v s, | € L, implies either a;b, € H or a? € H ; that is F a semi T-
ABSO F. subm. of X ofan R- M. R.

Definition 2.3. A proper F. subm. Aof F. M. X ofan R- M. M is
called a semi T-ABSO F. subm. of X if for F. singletons a, of R
and x,, € X such that a?x, € A, Vs,v € L, implies either a,x, € A
or a? C (A:;z X).
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The proposition specificates a semi T-ABSO F. subm. in

terms of its level subm is given:

Proposition 2.4. Let A be F. subm. of F. M. X of an R- M. M.
Then A'is a semi T-ABSO F. subm. of X iff the level 4, isasemi
T-ABSO subm. of X, , V ve L.

Proof. (=) Let a’?x € A, for each a€ R, x € X, , V VE L, then
A(a?x) = v, hence (a’x), € A so that a%x, € A where v=min{s,
k} and (a?), = a2 . But Ais a semi-T-ABSO F. subm., then either
azxy €A or a?c (4;zX), hence (ax), €A or (a®),Cc
(A:g X), implies ax € 4, ora? € (A,:x X,,). Thus 4, isasemi-T-
ABSO of X,,.

(<) Let a2x;, € A for F.singleton a;, of Rand x, € X, Vsk e L,
then (a%x), € A where v=min{s, k}, hence A(a®)> v so that
a’xed, . But A, is a semi T-ABSO subm. of X, then either
ax € A, or a® € (4,:r X,), hence (ax), € A or (a?), € (4:;z X),
so that a,x, € A or a? € (A:zx X). Thus A is a semi T-ABSO F.
subm. of X.

Remarks and Examples 2.5

(1) Every semiprime F. subm. is a semi T-ABSO F. subm.
Proof:
Let a?x, € A for F.singleton a, of R and x,, € X. Since
semiprime F. subm., then that a,x,, € A. So that A is a semi T-
ABSO F. subm.
However the converse incorrect, for example:

Let X:Z—L such that X(y)= {t if YOEWZ

It is obvious that X is F. M. of Z- M. Z.

1 .
Let A: Z—L such that A(y) :{E if y €42

) ) ) 0 o.w.
It is obvious that A is a fuzzy submodule of X.

Now, A is a semi T-ABSO fuzzy submodule of X since
23.1:=4C A, 2 = 41 S A where A(4)=§ > § ,but A is not
3 3 3 3 3
semiprime fuzzy submodule since 21. 11=2:1Z A because
3 3 3

AQ2)=0%= .
(2) It obvious that every T-ABSO F. subm. is semi T-ABSO F.
subm. However the convrse incorrect for example:

Let X:Z®Z—L such that X(x,y):{1 if (vy) €202

0.W.
It is obvious that X is F. M. of Z- M. ZGBZ
Let A: ZZ —L such that
A(x.y) :{]6 if (x,y) € 10Z8(0) ;¢

0.W.
It is obvious that A'is F. subm. of X .

Now, A,=10Z&(0) is not T-ABSO subm. in X,=Z6Z as Z-
M. since 2.5(1,0)=(10,0)€10Z&(0), but 2(1,0)¢10Z&(0),
5(1,0)¢10Z6(0) and 2.5¢(10Z2&(0):, ZDZ)=(0). But 4, is a
semi T-ABSO subm. since if r’(x,0)€A4, then r’x€10Z,
hence it obvious that 10Z is semiprime, that is r x€10Z, Thus
r(x,0)€10Z(0)= A,. Then A, isasemi T-ABSO subm. Thus
A'is asemi T-ABSO F. subm.

(3) Every a quasi-prime F. subm. is a semi T-ABSO F. subm.
However the converse incorrect. Consider the example in
part(1) where A is semi T- ABSO F. subm., but A is not
quasi-prime F. since 21 21 11 41CA but21 11 21 Z A.

(4) Let A,Bbe F. subm. of F M XofanR M Mand ACB.
If Alisasemi T-ABSO F. subm. of X then A is a semi T-
ABSO F. subm. of B.

Proof. Let be F. singleton r, of Rand x,, € B such that
r?x, €A, VkVEeL. Since Bis F. subm. of X then x,, € X
and rx, C A, then either r,x, € Aor 12 € (Aig X). If

C (A:x X) then r2X € A and since B is F. subm. of X, hence
2B S r#X ,sothat 2B < A implies r? € (A:x B). Thus Ais a
semi T-ABSO F. subm of B.
(5) The intersection of two semi T-ABSO F. subms is not
necessary that a semi T- ABSO F. subm., for example:

. _(1 ifyeiZ,
Let X: Z L h that X(y)=
- 12— Su_C at X(y) { 0 oW
Itis clear that X is F. M. of Z- M. Z.
Let A: Zy,—L such that A(y) :{g if yE [OR )

Let B: Z,,—L such that B(y) {” if 3’ 40) VveL

It is obvious that A and B are F. subms of X.

Now, 4,=(4) , B,=(6) and X,=Z,, as Z- M. It is obvious that
A, and B, are semi T-ABSO subms, but 4, N B, =(4) N (6)
=(0) isnot semi T-ABSO subm. since 22 (3)= (0),but

2. (3)#(0)and 2°¢ annZ,, = 12Z. So that A and B are semi
T-ABSO F. subms, but ANB is not a semi T-ABSO F. subm.

of X.
. _(1 ifyez
(6) Let X:Z—L such that X(y)={ o TNEs

It is obvious that X be F. M. of Z- M. Z.
: 2
Let A: Z—L such that A(y) ={18 if yep'Z VvEL
0.W.

Where p is a prime number.

It is obvious that A'is F. subm. of X.

Now, A, = p?Z and X, = Z as Z- M

It is obvious that A, , p is prime number is a semi T-ABSO
subm. Thus Alisa semi T-ABSO F. subm. of X.

(7) Let A, Bbe two F. subm. of F. M. X of an R- M. M suth that
A=B. If Aisasemi T- ABSO F. subm. then it is not necessary
that B is a semi T-ABSO F. subm.for example

Let X:Z—L such that X(y)= {t if YOEWZ

It is obvious that X is F. M. of Z- M. Z.

Let A: Z—L such that A(y) :{v ify €4z VveEL

0.W.
Let B: 2L such that B(y) ={* if vE 60Z yyel

It is obvious that A and B are F subm of X.

Now, A,=4Z , B,=60Z are subm.of X,=Zas Z- M. and
47=60Z, but A, = 4Z is semi T-ABSO while B,=60Z is
not semi T-ABSO subm. of X,,. Sothat A=B where Aisa
semi T-ABSO F. subm., but B is not semi T-ABSO F. subm
of X.

(8) If A is semi T-ABSO F. subm. of F. M. X ofan R- M. M and
BCA, it may be that B is not semi T-ABSO F. subm. for
example:

Consider the example in part(7), where A is a semi T-ABSO
F. subm.,BcAsince B, = 60Z c A, = 4Z, butB is not
semi T-ABSO F. subm. of X.

Recall that "Let A be a F. subm. of F. M. X of an R-module 37,
then A is called an irreducible F. subm. if for all two F. subms B
and K such that BNK=A then B=A or K=A otherwise A is called
reducible, [12]".

Proposition 2.6. Let X be F. M. of an R- M. M and A is
irreducible F. subm. of X. Then the following expressions are
equivalent:

1- Aiis T-ABSO F. subm. and (A: X) is semi prime F. ideal.

2- Alisaprime F. subm.

3- Alisasemiprime F. subm.

4- A'is a quasi prime F. subm.
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5- Ais T-ABSO F. subm. and (4:g X) is a prime F. ideal.

Proof. (1)=(2) Let 7, (rx,) € A for F. singleton r, of R and
x, € X. Since A is T-ABSO F. subm., then 7,x, S A or r? C
(A:ig X). If mx, € A then we are done. If ¥ € (A:x X), then
1. € (A:g X) since (A:x X) is a semiprime F. ideal. so that A is a
prime F. subm.

(1)=(3) Let r¥x, < A for F. singletons r, of R and x,, € X. Since
A is T-ABSO F. subm,, then rx, €A or v S (A X). If
X, € A the proof is complete.

If 2 € (A:x X), then 1, € (A:x X) since (A:z X) is a semi prime F.
ideal. Hence rx,, € A. Thus A is a semi prime F. subm.

(2= (3)By [12].

(3)= (4) By [6].

(4)=(5) Since A is a quasi prime F. subm., then A is T-ABSO F.
subm. and (A:g X) is a prime F. ideal by [6].

(5)=(1) Itisclear.

Proposition 2.7. Let X be F. M. of an R- M. M and A and B be F.
subm. of X. Then A is a semi T-ABSO F. subm. iff 2B < A for
F. singleton r, of R, Vke L, implies 1, B € A or r? < (A:g X).
Proof. (=) Let 2B € A for F. singleton r, of R. Assume there
exists x,, € B such that r,x,, € 4, since 2B € A, hence r#x, € A,
but A is a semi T-ABSO F. subm. and r,x,, € A.

Then 2 € (A:iz X).

(&) Itis obvious.

Proposition 2.8. Let A be a proper F. subm. of F. M. ofan R- M.
M. If Ais asemi T-ABSO F. subm. of X, then (A:z X) is a semi
T-ABSO F. ideal.

Proof. Let ag, b, be F. singletons of R, such that a2b; € (A:g X),
hence a?b,X € A, then a2b;x, € A for each F. singleton x, € X
and suppose that a? ¢ (A4:z X). Since A is a semi T-ABSO F.
subm., hence asb;x,,  A. So that a;b; € (A:x X). Then (A:x X) is
semi T-ABSO F. ideal.

Recall that " A fuzzy module X of an R-module M is called a
multiplication fuzzy module if for each non-empty fuzzy
submodule A of X there exists a fuzzy ideal H of R such that
A=HIX,[6]".

The converse of Proposition (2.8) hold under the class of
multiplication F. M. as follows:

Proposition 2.9. Let A be a proper F. subm. of a multiplication F.
M. X of an R- M. M. If (4:z X) is a semi T-ABSO F. ideal, then A
isasemi T-ABSO F. subm.

Proof. Let a2x,, € A for F.singletons a, of Rand x,, € X.

Then a? < x,, >C A. But < x,, >= HX for some F. ideal H of R.
Since X is a multiplication F. M., then a2H S (4:zx X). But
(A:r X) is a semi T-ABSO F. ideal, then either a,H € (4:x X) or
a? € (A:x X) by Proposition (2.7). Then a,HAX € A or a2 c
(A:g X). Thus ag < x, >S Aor a? € (A:;x X). Then A is a semi T-
ABSO F. subm.

Recall that "A F. M. X of an R-M M is called a cyclic F. M. if
there exists x, S X such that y, € X written as y, = nx,, for
some F. singleton r;of R, where kl,v € L in this case, write
X=< x,, > to denote the cyclic F. M. generated by x,,, [6]".

Corollary 2.10. Let A be F. subm. of cyclic F. M. X of an R- M.
M. Then A is a semi T-ABSO F. subm. iff (A: X) is a semi T-
ABSO ideal.

Proof. Since every cyclic F. M. is a multiplication F. M. by[6].

By Proposition (2.8) and Proposition (2.9), then the outcome is
obtained.

Recall that "If X is F. M. of an R-M.}, then X is called a
finitely generated F. M. if there exists x4, x,, x5, ... € X such that
X:{al(xl)v1 + az(xz)vz +-t an(xn)vn}- where a; €
R and a(x), = (ax),, VVEL. Where

_(v if y=ax (gqm
@nm={g o= o

Recall that "If X is F. M. of an R-M. M, then X is said to be a
faithful F. M. if F-annX<0; where F-annX={x,: r.x, = 0, V x,, €
X and ry is F. singleton of R,V v, k € L}, [15]".

Corollary 2.11. Let X be a faithful finitely generated multiplication
F. M. of an R- M. M and A is a proper subm. of X. Then the
following expressions are equivalent:

1- Alisasemi T-ABSO F. subm. of X;

2- (A:g X) isasemi T-ABSO F. ideal;

3- A=HX for some semi T-ABSO F. ideal H of R.

Proof. (1)=(2) By Proposition (2.8).

(2)=(3) By [6, Proposition (2.2.2)], we get the result.

(3)=(1) Let r?x, € A for F. singleton r,, of R and x,, € X, then
12 < x, >C A. Since X is a multiplication F. M., so that < x,, >
= KX for some F. ideal K of R, then r2KX < HX. Since X is a
faithful finitely generated multiplication F. M., hence r?K ¢ H.
But H is a semi T-ABSO F. ideal, so that either r,K € H or
r# € (A:x Az) by Proposition (2.7). Hence n,KX S AX = A or
2 €A =(AX;z X) = (Aix X). Thenrpx, € A or 12 € (A X).

Proposition 2.12. Let A be a proper F. subm. of F. M. X of an R-

M. M. Then the following expressions are equivalent:

1- Alisasemi T-ABSO F. subm. of X;

2- (A:x A) is a semi T-ABSO F. subm. for each F. ideal H of R

such that AXZA,;

3- (A:x < ag >) isasemi T-ABSO F. subm. for each F. singleton
a, of R, a,X € A.

Proof. (1)=(2) Since HXZA, hence (4:xA) #X . Let r2x, C

(A:x A) for F. singletons r, of R, x, € X. Thus r2Hx, S A. By

Proposition (2.7), either 7Jdx, €A or r? S (A:xX), hence

1%, © (Aix H) or 2 € ((A:x A):z X).

(2)=(3) It is obvious.

(3)=(1) Since 1,X € A, hence (A:zr <1, >) is a semi T-ABSO

F. subm., then A is a semi T-ABSO F. subm. since (A:(z < 1, >) =

A.

Proposition 2.13. Let A be asemi T-ABSO F. subm. of F. M. X
of an R- M. M. Then (4: x,,) is a semi T-ABSO F. ideal of R, for
each x, € X — A.

Proof. Let r2b, < (A:g x,) for some F. singletons r,,b;, of R .
Hence (r#b,)x, € A, So that r2(b,x,) S A. Since A is a semi T-
ABSO F. subm.,, then either r,b;x, € A or r? € (A:z X), hence
either r b, x, S (A:g x,) Orr? < (A:x X). Thus

(A:g x,,) isasemi T-ABSO F. ideal of R.

The following proposition is a characterization of a semi T-
ABSO F. subm.
Proposition 2.14. Let A be F. subm. of F. M. X of an R- M. M.
Then A is a semi T-ABSO F. subm. of X iff (A:;z7?x,) =
(Aig 1ix,) Or 1% © (A:g X) for each F. singletons 7, of R and
x, € X, Vkyv € L.
Proof. (=) Assume that r? & (A:z X). To show that (A:z réx,) =
(A:g T Xy).

[107]



It is observe that (A:z7ex,) S (A:ix7x,). Now, let a, C
(A:g m¥x,), hence rZasx, S A. Since A is semi T-ABSO F. subm.
and r? & (A:z X), hence r,asx, S A,
so that a; € (A:g 1Xy,). Then (A:g 12x,) = (Aig TeXy).
(&) Let r?x, €A, hence (A:x1ix,)=Agx where Agz(y) =
{1 ify€R

0 o.w.
But (A:x 12x,) = (A:g TkXy,) OF 12 € (A:g X) by hypothesis.
Thus (A:g 1,x,) = Az and then r,x,, € A. So that either r.x, € A
orr? € (A X).

Definition 2.15. Let f:M; — M, be a mapping and X, , X, be F.
M. of an R- M. M, ,M, resp., then F. kernel of a mapping f
denoted by F-ker( f) is F. subm. of X; defined by:

F-ker( f)={x,: x, € X; such that f(x,) = 0,}, V v€ L.

Proposition 2.16. Let X, ,X, be F. M. of an R- M. M, , M, resp.
Let f:M, — M, be an epimorphism and A is a semi T-ABSO F.
subm. of X, such that F- ker f € A. Then f(A) is semi T-ABSO
F. subm. of X,.

Proof. Let r2y, < f(A) for F. singletons 7, of R and y, S X,.
Since f is onto, so y, = f(x,) for some F. singleton x,, € X;, then
r2f(x,) = f(a;) for F. singleton a; € A. Then rx, —as C
F—Kker f € A, thus r?x,, € A. But A is a semi T-ABSO F. subm.,
hence r,x, €A or 12 € (Aig X;). If 13x, € A then n.f(x,) S
f(ay), hence .y, € f(A). If 17 S (A:x X;), then ¥ X; C A4,
hence r2f(X;) € f(A) , thus ¥ € (f(A):x f(X1)). But f(X;) =
X, since f is onto, hence 12 € (F(A):r X>) .

Remark 2.17. The condition f is an epimorphism in above
proposition can't dropped, as can be proved by the following
example:
_(1 ifyez

Let X;:Z—L h that X =

et X;:Z—L such that X;(y) {0 " ouw.
Let X,:Z—L such that X,(y)= {t if yOEWZ
It is obvious that X, ,X, are F. M. of Z- M. Z.
Let f:X, — X, be F. homomorphism if f:Z—Z with
f(n) = 9n be homomorphism but not epimorphism, v n € Z

Let A: Z—L such that A(y) :{(1)7 ifoy‘f 4z VveEL

It is obvious that A is F. subm. of X;.

Now, A, =4Z, (X1), =Z and (X;), =Z .A, =4Z isasemi T-
ABSO subm., but f(4Z) =36Z is not semi T-ABSO since
2°.9€36Z ,but 2°¢36Z and 2. 9¢36Z. So that A isa semi T-ABSO
F. subm., but f(A) is not semi T-ABSO F. subm.

Proposition 2.18. Let X, ,X, be F. M. of an R- M. M, , M, resp.
Let f: M; — M, be an epimorphism, B is a semi T-ABSO F.
subm. of X, . Then f~1(B) isasemi T-ABSO F. subm. of X;.
Proof. Let r?x, < f~1(B) for F. singletons r,, of Rand x, < X,
hence f(r#x,) € B so r?f(x,) € B. Since B is semi T-ABSO F.
subm., then either 1, f(x,) € B or 12 € (B:z X;), S0 that r.x,
f7Y(B) or 2 € (B:r X,).

If 72 < (B:xX,), then r2X, € B, hence r?f(X;) € B. So that
r2X, € f7Y(B). Then ¥ < (f~1(B):x X;). So that either r,x, <
f1(B) orrg < (fT1(B)ig Xp).

Recall that "A F. ideal K of aring R is called a principle F. ideal
if there exists x,, € K such that K = (x,,). For each a, € K, there
exists F. singleton b; of R such that a;, = b;x,, where v,s,1 € L, that
is K = (x,) = {a; € K:a, = b;x,, for some F. singleton b, of R},
[107".

Proposition 2.19. Let R be a principle F. ideal ring (P. F.1.R) and X
be F. M.of an R- M. M. Let A be a proper F. subm. of X and A
be F. ideal of R . Then A is a semi T-ABSO F. subm. of X iff
A%x, € A impliesAx, € A or H? € (A:x X) forany F.ideal H of
Rand F.singleton x, € X.

Proof. (=) Suppose that H be F. ideal of R and F. singleton
x, € X. Since R is P. F.L.R , hence H =<1, > for some F.
singleton r, of R. If H2x, €A then <7, > x, € A, thus
r#x, € A, then either r,x, € A or 2 S (A:z X). Hence Hx, € A
or A2 € (A:;z X)

(<) Itis obvious.

Recall that "Let A and B be two F. subms of F. M. X. If X=A+B
and ANB=0,, then X is called F. internal direct sum of A and B and
denoted by A@B. Define by:

(A®B)(a,b)=min{A(a), B(b) for all (a,b) € M;®M,}
Moreover, A and B are called direct summand of X, [6]".

Proposition 2.20. Let X = X,®X, be F. M. of an R- M. M =
M, ®M, where X, ,X, be F. M. ofan R- M. M, , M, resp.. Let A,
B be proper F. subms of X, , X, resp., then

1- Alis semi T-ABSO F. subm. in X, iff A®X, is semi T-ABSO
F. subm.in X, ®X, =X .

2- B is semi T-ABSO F. subm. in X, iff X;®B is semi T-ABSO
F. subm.in X, ®X, =X .

Proof. (1) (=) Let r2(x,,v,) S ADX, for F. singletons 7, of R
and (x,,y,) € X. Hence r#x, €A and 72y, € X,. Since A is
semi T-ABSO F. subm. in X;, then either rn,x, € A4 or 12 ¢
(A:x X1) . So that 7 (x,, y,) S A®X, or 12 € (A®X,:z X,DX,).
Then A®X, is semi T-ABSO F. subm. in X;®X, = X.

(&) Let réx, < A for F. singletonsr, of R and x,, € X;, hence for
any F. singleton y, € X,, 1. (x,, yn) S ABX,. Since ABX, is a
semi T-ABSO F. subm.. in X, then either 7, (x,,y,) € A®X, or
12 € (A®X,:g X,0X,) = (A:ig X;) . So that n,x, CSA or ric
(A:g X;). Then A isa semi T-ABSO F. subm. in X;.

(2) The proof by the same method in (1).

Proposition 2.21. Let X, ,X, be F. M.ofan R M. M, , M, resp.
and X = X,®X, be F. M. of an R- M. M = M,;@®M, such that
F — annX,®F — annX, = Ay where 1z(y) = 1, Vy€ R. Let A be
a semi T-ABSO F. subm. of X, then either

1-A = A,®X, and A, isasemi T-ABSO F. subm. in X, or

2-A =X,®A,and A, isasemi T-ABSO F. subm. in X, or
3-A=A,®A, and A, isasemi T-ABSO F. subm. in X; and 4,
isasemi T-ABSO F. subm. in X,.

Proof. Since f — annX,;®f — annX, = Az where 1z(y) = 1, Vye
R, then by [5], A = A;®A, for some F. subm. 4, of X, and A,
of X, . Then we have:

(1) A; <X, and 4, = X,.

(2)A; =X, and 4, < X,.

(3)A4; <X; and 4, < X,.

Case(1) and case(2), we get A = A;@BX, or A = X,®A,. Then A,
is semi T-ABSO F. subm. in X; or A, is semi T-ABSO F. subm.
in X, by Proposition (2.20).

Case(3): Suppose that r?x, € A for F. singletons 7, of R and
x, € X;. Hence 1(x,,0,) € A;®A, = A. But A be a semi T-
ABSO F. subm. of X, then either 7,(x,,0,) €A or 12C
(A:g X) € (A;:x X;) implies that r,x, € A; or 1 S (A X1).
Then A, isasemi T-ABSO F. subm. in X;.

By the same method we get 4, is a semi T-ABSO F. subm.. in X,

"Definition 2.22. A F. M. Xofan R- M. M s called aduo F. M.
if for each F. subm. A of X, Ais fully invariat, [5]".
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Note:If X = X,®X, be F. M. of an R- M. M = M, @M, is a duo
F. M. or a distributive F. M. see[9], we can have the same
inference of Proposition (2.21).

Proposition 2.23. Let X, ,X, be F. M. of an R- M. M, , M, resp.
and A,,A, are semi T-ABSO F. subms of X;, X, resp. such that
(A1:g X1) = (A3 X5). Then A = A; DA, is a semi T-ABSO F.
subm. of X = X, ®X,.

Proof. Let 1(x,,y,) S A;®A,, so that réx, € A; and 12y, S
A,. Since Ay, A, are semi T-ABSO F. subms, then r,x, S A, or
e € (A Xy) and 7y, S A or 17 € (Axip Xp) = (Apig Xp),
hence r,x, € A; and 7.y, S A, orrZ S (Aqig Xp).

Then 7 (x,,y,) S A;BA, or 1# € (A:x X). Thus A is a semi T-
ABSO F. subm. of X.

3. Semi T-ABSO F. M.

In this section we present the concept of semi T-ABSO F. M.
Some of properties and relationships with other classes of F. M.
are illustrated.

First, we give the following definition.
Definition 3.1. A F. M. X of an R- M. M is called T-ABSO F.
M. if the zero F. subm. (0,) is T-ABSO F.; that is if for each F.
singleton ag, b; of R and x,, € X, Vs,l,v € L, such that asb;x,, = 0,
implies a;x, = 0, or b;x, =0, orash; € F —annX .

Now, we present the concept of a semi T-ABSO F. M. as
follows:

Definition 3.2. Let X be F. M. of an R- M. M, X is called a semi
T-ABSO F. M. if 0, isasemi T-ABSO F. subm. of X.

The proposition specificities a semi T-ABSO F. M. in terms of
its level M. is given:
Proposition 3.3. Let X be F. M. of an R- M. M. Then X is a semi
T-ABSO F. M. iff the level X,, isasemi T-ABSO M., ¥ ve L.
Proof. (=) Let a®?x =0 for each a€ R, x € X, , V V€ L, then
(a*x), €0, <0, , hence a2x, €0, where v=min{s, k} and
(a?®), = a?. But 0, is a semi T-ABSO F. subm. by Definition (3.2),
then either a.x, €0, or a2 < (0;:3X)=F —annX, hence
(ax), €0, or (a?), EF —annX, implies ax=0 or a?€
annX,. Then (0) isasemi T-ABSO subm. of X,
(&) Let a2x, € 0, for F. singleton a, of R and x, € X, then
(a?x), S 0, where v=min{s, k}, hence 0, (a?)>v. If a0, then
0, (a*)=0> v which is a contradiction. so that a’x=0 . But (0) is a
semi T-ABSO subm. of X, then either ax = 0 or a? € annX,,
hence (ax), €0, or (a?), € F —annX , so that a;x, €0, or
a? € F —annX. Thus 0, is semi T-ABSO F. subm. of X.

Remarks and Examples 3.4.
(1) Every semiprime F. M. is a semi T-ABSO F. M., but the
converse incorrect, for example:

Let X:Z,9—L such that X(y)={10 if y € VZV49

It is obvious that X be F. M. of Z- M. Z,,.

X, =Z45 as Z- M. is a semi T-ABSO M. since 72.1 =0
implies 72 € (0:;Z,9) = 49Z , but X, is not semiprime M.
since 7. 1#0 . So that X is a semi T-ABSO F. M., but it is not
semiprime F. M. by [12].

(2) Every T-ABSO F. M. isasemi T-ABSO F. M.

(3) Every quasi-prime F. M. is a semi T-ABSO F. M. But the
converse incorrect see the example in part(1) where X, = Z,q
as Z- M. is semi T-ABSO M., but X,, is not quasi-prime M. since
7.7. 1=0 and 7. 1#0, So that X is semi T-ABSO F. M.,
but it is not quasi-prime F. M. by [6].

(4) Every F. subm. of a semi T-ABSO F. M. is a semi T-ABSO
F. M.

Proposition 3.5. Let X be F. M. of an R- M. M. If X is a semi T-
ABSO F. M, then F — annzX is semi T-ABSO F. ideal.

Proof. Since X is semi T-ABSO F. M., then 0, is semi T-ABSO
F. subm. By Proposition (2.8) when A=0,, we have (0,:x X) =
F — anngX is a semi T-ABSO F. ideal.

Proposition 3.6. Let X be a multiplication F. M.of an R- M. M.
Then X is a semi T-ABSO F. M. iff F —anngX is a semi T-
ABSO F. ideal.

Proof. (=) By Proposition (3.5), we get the outcome.

(<)By Proposition (2.9), we get the outcome.

Corollary 3.7. Let X be a faithful multiplication F. M. of an R- M.
M. Then the following expressitions are equivalent:

1- X isasemi T-ABSO F. M,;

2- Risasemi T-ABSO F. ring.

Proof. (1) Since X is a semi T-ABSO F. M., so that F — anngX is
semi T-ABSO F. ideal by Proposition (3.6). But F — anngX = 04,
hence 0, is semi T-ABSO F. ideal.

Then R is semi T-ABSO F. ring.

(2) Since R is a semi T-ABSO F. ring, so that 0, is semi T-ABSO
F. ideal, but 0, = F — anngzX since X is a faithful. Then X is semi
T-ABSO F. M. by Proposition (3.6).

Proposition 3.8. Let X be F. M. of an R- M. M such that F —
anngX is a semiprime F. ideal of R . Then X is semi T-ABSO F.
M. iff X is semiprime F. M.

Proof. (=) Let r?x, < 0, for F. singletons r,, of R and x, € X.
Since X is semi T-ABSO F. M., then ryx, €0, or 12 ¢C
(0,: X) = F — anngX. Hence r,x, € 0, or

1, © F —anngX since F — anngX is semiprime F. ideal of R.
Thus rx, € 0, ,Vx, S X.Then 0, is semiprime F. subm.. So that
X issemiprime F. M. by [11].

() Itis obvious.

Proposition 3.9. Let X be F. M. ofan R- M. M. If X isasemi T-
ABSO F. M., then F — anngA is semi T-ABSO F. ideal for each
non-constant F. subm. A of X.

Proof. Let A be a non-empty F. subm. of Xand F — anngA # Ay
because if F —anngA = AR, then A = 0, which is a contradiction.
Now, suppose that rZa, € F — annzA for F. singletons 7, ag of
R. Hence r?a,A € 0,. Since X is semi T-ABSO F. M., then
either r,a,A € 0; or 2 € (04:x X) by Proposition (2.7). Hence
either r,a, € F — anngA or r? € F — anngA since F — anngX €
F — anngzA by [6]. Thus F — anngzA is semi T-ABSO F. ideal.

Recall that "A ring R is said to be an integral domain if R has
no zero-divisor F. singleton (i.e. if a,, is F. singleton of R 3b, is F.
singleton of R such that a,b; = 0, ,vv, | €L, implies a, = 0, or
b, =0,), [16]".

Recall that " A F. subm Aof F. M. Xis called a divisible F. if
for each F. singleton x,, € A there exists F. singleton y, < A4 and
for each re R, r#0, x, = ry, where (ry), = ry,, X is called a
divisible F. M. if Xis F. divisible subm. of itself, [14]".

Proposition 3.10. Let R is an integral domain and X is a non-empty
divisible F. M. of an R- M. M. Then X is semi T-ABSO F. M. iff
X is quasi-prime F. M
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Proof. (=) Let ryasx, < 0, for
x, € X.

If r.a, €04, then r, €0, or
asx, € 04.

If r.a, €0, then 1, €0, or a; € 0, since R is an integral
domain.

If r.x, € 04, then the proof is complete.

If nex, €0,, 1, € 0, and X is a divisible F. M., hence . X = X,
then x,, = r,y, for F.singleton y, € X, thus ryasx, = reasny, =
rfasy, € 0,. But 0, is semi T-ABSO F. subm., then either
nayp €0, or 12 S F—anngX. If 1% S F—anngX then
12X € 04, but 7, € 0,hencer? € 0,. Then 12X = X < 0, this is a
contradiction. Thus 7 € F — anngX, then r.a,y, S 0, so that
asx, € 0,. Thus 0, is quasi-prime F. subm.

(<) Itis obvious.

F. singletons 7, ,a, of R and

a, € 04, so that r,x, €0, or

Corollary 3.11. Let R be an integral domain and X is a non-empty
divisible F. M. of an R- M. M. Then the following expressions are
equivalent:

(1) X'isasemi T-ABSO F. M.

(2) X'is a quasi-prime F. M.

(3) Xisaprime F. M.

Proof. (1)=(2) It follows by Proposition(3.10).

(2)=(3) It follows by [6].

(3)=(1) It follows by [11 , 6]and Proposition(3.10).

Proposition 3.12. A F. M. X of an R- M. M is a semi T-ABSO F.
M. iff either F — ann ryx, = F — annrx, for any F. singletons
. of R and x,, € X such that r,x,, € 0, or X € 0.

Proof. (=) Letay, C F — ann réx, , riéx, € 0.

Then r?asx, € 0,. But X isasemi T-ABSO F. M.andr? € F —
ann X, hence r.asx, € 0,, so that a;, € F —annmn.x,. Then
F —annnx, =F —annrix, .

(&) Itis obvious.

Proposition 3.13. Let X = X,®X, be F. M. of an R- M. M =
M, ®M,. If X is semi T-ABSO F. M., then X; and X, are semi T-
ABSO F. M.

Proof. By Remarks and Examples(3.4) part(4) the outcome hold.

Remark 3.14. The converse of Proposition(3.13) is not true always,
for example:

Let X:Z,@Z4o—L such that X(x,y)= {10 if (’;3‘2 € 2024

It is obvious that X be F. M. of Z- M. Z,®Z,,.

And X;:Z, — L such that X;(x) = {t if f)vaz

It is obvious that X; be F. M. of Z- M. Z,.

X3:Z49 — L such that X,(y) = {10 v 3;EWZ49

It is obvious that X, be F. M. of Z- M. Z,,.

Now, X, = Z,8Z, as Z- M. where (X;), = Z, and (X,), = Z49
are semi T-ABSO M., but X,, = Z,®Z,4 is not semi T-ABSO M.
since 7%2(0,1) = (0,0), but 7(0,1) = (0,7) # (0,0) and 72 ¢
annX, = annZ, N annZ,, = 2Z N 49Z = 98Z. So that X;

and X, are semi T-ABSO F. M. but X is not semi T-ABSO F.
M.

Theorem 3.15. Let X = X,®X, be F. M. ofan R- M. M =
M, ®M, where X, and X, be prime F. M. Then X = X, ®X, is
semi T-ABSO F. M.

Proof. Let r%(x,,y,) € (0,,0,) for F. singletons 7, of R and
(x,,yr) € X. Hence r2x, € 0; and r#y, € 04, then 7, (rxx,) S

0, and 7, (1, yn) € 0, . Since X; and X, be a prime F. M., then
either( ryx, €0, or r, & F —annX;) and (r,y, €0, or
1, © F —annX,)

Then there exist four case:

1 If rx, €0, and ry, € 04, then 7, (x, ,y,,) S 0;.

2) f n,€F—annX, and ., € F —annX,, thenrn, € F —
ann X; NF —annX, = F —ann X, butr, € F —ann X implies
12 € F — annX.

3) If nx,<0, and r, € F—annlX,, then n,x, €0, and
1Yn S 04, hence 1, (x, , yp) € 0;.

4) If ,€F—annX, and 7y, €0,, then nx, €0, and
Te¥n S 0y, hence 7 (x, ¥,) € 0;. Then X is a semi T-ABSO F.
M.

Remarks 3.16.

(1) By an application of Theorem(3.15), each of the following F.
M. isa semi T-ABSO F. M.ofanR- M. Z.

X.Z,®zZ,—L, XZ,®Z,—L , X Z,0Z—L , XQ®Z—L ,
X:Z®Z—L and X:Q®Q—L where p, q are two prime numbers.
(2) The condition X; and X, be prime F. M. can't deleted from
Theorem (3.15), see Remarks (3.14) where X,, = Z,0Z,q as Z- M.
, (X1)y =Z,asZ- M. isaprime M. and (X;), = Z,9 as Z- M. is
not prime M. also X, = Z,0Z,, is not semi T-ABSO M., then X;
is prime F. M., X, is not prime F. M. and X is not semi T-
ABSO F. M.

Proposition 3.17. Let X = X,®X, be F. M.ofan R- M. M =
M, ®M, such that F — annX, = F — annX,. Then X is semi T-
ABSO F. M. iff X; and X, are semi T-ABSO F. M.

Proof. (&) Let r?(x,,yn) € (0,,0,) for F.singletons 7, of R
and (x,,y,) € X.

Hence rx, € 0, and r?y, € 0, . Since X, and X, be a semi T-
ABSO F. M., then either( r,x, € 0, or r? € F — annX;) and
(reyn €0, or 2 € F —annX, = F — annX,). Thus (r;x, € 0,
and 7.y, €0,) or ? € F —annX;. Then 1,(x,,v,) S (04,0,)
orr? € F —annX; = F —annX; N F — annX, = F — annX.

So that X is semi T-ABSO F. M.

(&) Itis obvious.

Remarks 3.18. The condition F —annX; =F —annX, is
obligate for Proposition (3.17), so we can't dropped it, we see the
following example:

Let X:Zo@®Q —L such that X(x,y)= {3 if (;C’a//) € 2,80

It is obvious that X be F. M. of Z- M. Z,®DQ.

And X,: Z, — L such that X, (x) = {}) if . 329

Itis clear that X, is F. M. of Z- M. Z,,.

X3:Q — L such that X,(y) = {é if z’iQ

It is obvious that X, be F. M. of Q as Z- M.

Now, X, = ZoBQ as Z- M. and (X;), = ZgasZ- M.,

(X,), = Q as Z- M., where X,, = Z,@®Q is not semi T-ABSO M.
since 3%(1,0) = (0,0), but 3(1,0) # (0,0) and 32 ¢ annX, =
annzZy N annyQ =0, but each of (X;), =2y as Z- M. ,
(X,), =Q as Z- M. is a semi T-ABSO M. and annzZ, = 9Z #
ann;Q = 0. So that X is not semi T-ABSO F. M., but X; and X,
are semi T-ABSO F. M. and F — annX; # F — annX,

Proposition 3.19. The following expressions are equivalent for F.
M. X ofanR- M. M

(1) X'is asemi T-ABSO F. M.

(2) F — annyH is a semi T-ABSO F. subm. for each F. ideal 0
of Rwith H & F — annX.
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(3) F —anny < a; > is a sem T-ABSO F. subm. for each F.
singleton a, of R with a; € F — annX, Vse L.
Proof. It follows by Proposition (2.12) with A=0;,.

Now, we give the concept of a comultiplication F. M. as
follows:
Definition 3.20. A F. M. X of an R-M. M is called a
comultiplication F. M. if A=F — annyF — anng A for each F. subm.
A of X.
Proposition 3.21. If X is a semi T-ABSO comultiplication F. M.
of an R- M. M. Then every proper F. subm. of X is a semi T-
ABSO F. subm.
Proof. Let A be a proper F. subm. of X, hence A = F — annyF —
anngA. Put F —anngzA=H, so that A=F —annyH. But
A & F—anngX since if A S F—anngX hence F — anngX =
F — anngzA and then A = X which is a contradication.
Then by Proposition (3.18), A = F — annyH is semi T-ABSO F.
subm. Hence every proper F.subm. A of X is semi T-ABSO F
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